ladybird/Userland/Libraries/LibWeb/Layout/FormattingContext.cpp

1233 lines
60 KiB
C++

/*
* Copyright (c) 2020-2022, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibWeb/Dump.h>
#include <LibWeb/Layout/BlockFormattingContext.h>
#include <LibWeb/Layout/Box.h>
#include <LibWeb/Layout/FlexFormattingContext.h>
#include <LibWeb/Layout/FormattingContext.h>
#include <LibWeb/Layout/GridFormattingContext.h>
#include <LibWeb/Layout/InitialContainingBlock.h>
#include <LibWeb/Layout/ReplacedBox.h>
#include <LibWeb/Layout/SVGFormattingContext.h>
#include <LibWeb/Layout/SVGSVGBox.h>
#include <LibWeb/Layout/TableBox.h>
#include <LibWeb/Layout/TableCellBox.h>
#include <LibWeb/Layout/TableFormattingContext.h>
namespace Web::Layout {
FormattingContext::FormattingContext(Type type, LayoutState& state, Box const& context_box, FormattingContext* parent)
: m_type(type)
, m_parent(parent)
, m_context_box(context_box)
, m_state(state)
{
}
FormattingContext::~FormattingContext() = default;
// https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Block_formatting_context
bool FormattingContext::creates_block_formatting_context(Box const& box)
{
// NOTE: Replaced elements never create a BFC.
if (box.is_replaced_box())
return false;
// NOTE: This function uses MDN as a reference, not because it's authoritative,
// but because they've gathered all the conditions in one convenient location.
// The root element of the document (<html>).
if (box.is_root_element())
return true;
// Floats (elements where float isn't none).
if (box.is_floating())
return true;
// Absolutely positioned elements (elements where position is absolute or fixed).
if (box.is_absolutely_positioned())
return true;
// Inline-blocks (elements with display: inline-block).
if (box.display().is_inline_block())
return true;
// Table cells (elements with display: table-cell, which is the default for HTML table cells).
if (box.display().is_table_cell())
return true;
// Table captions (elements with display: table-caption, which is the default for HTML table captions).
if (box.display().is_table_caption())
return true;
// FIXME: Anonymous table cells implicitly created by the elements with display: table, table-row, table-row-group, table-header-group, table-footer-group
// (which is the default for HTML tables, table rows, table bodies, table headers, and table footers, respectively), or inline-table.
// Block elements where overflow has a value other than visible and clip.
CSS::Overflow overflow_x = box.computed_values().overflow_x();
if ((overflow_x != CSS::Overflow::Visible) && (overflow_x != CSS::Overflow::Clip))
return true;
CSS::Overflow overflow_y = box.computed_values().overflow_y();
if ((overflow_y != CSS::Overflow::Visible) && (overflow_y != CSS::Overflow::Clip))
return true;
// display: flow-root.
if (box.display().is_flow_root_inside())
return true;
// FIXME: Elements with contain: layout, content, or paint.
if (box.parent()) {
auto parent_display = box.parent()->display();
// Flex items (direct children of the element with display: flex or inline-flex) if they are neither flex nor grid nor table containers themselves.
if (parent_display.is_flex_inside()) {
if (!box.display().is_flex_inside())
return true;
}
// Grid items (direct children of the element with display: grid or inline-grid) if they are neither flex nor grid nor table containers themselves.
if (parent_display.is_grid_inside()) {
if (!box.display().is_grid_inside()) {
return true;
}
}
}
// FIXME: Multicol containers (elements where column-count or column-width isn't auto, including elements with column-count: 1).
// FIXME: column-span: all should always create a new formatting context, even when the column-span: all element isn't contained by a multicol container (Spec change, Chrome bug).
return false;
}
OwnPtr<FormattingContext> FormattingContext::create_independent_formatting_context_if_needed(LayoutState& state, Box const& child_box)
{
if (child_box.is_replaced_box() && !child_box.can_have_children()) {
// NOTE: This is a bit strange.
// Basically, we create a pretend formatting context for replaced elements that does nothing.
// This allows other formatting contexts to treat them like elements that actually need inside layout
// without having separate code to handle replaced elements.
// FIXME: Find a better abstraction for this.
struct ReplacedFormattingContext : public FormattingContext {
ReplacedFormattingContext(LayoutState& state, Box const& box)
: FormattingContext(Type::Block, state, box)
{
}
virtual float automatic_content_height() const override { return 0; };
virtual void run(Box const&, LayoutMode, AvailableSpace const&) override { }
};
return make<ReplacedFormattingContext>(state, child_box);
}
if (!child_box.can_have_children())
return {};
auto child_display = child_box.display();
if (is<SVGSVGBox>(child_box))
return make<SVGFormattingContext>(state, child_box, this);
if (child_display.is_flex_inside())
return make<FlexFormattingContext>(state, child_box, this);
if (creates_block_formatting_context(child_box))
return make<BlockFormattingContext>(state, verify_cast<BlockContainer>(child_box), this);
if (child_display.is_table_inside())
return make<TableFormattingContext>(state, verify_cast<TableBox>(child_box), this);
if (child_display.is_grid_inside()) {
return make<GridFormattingContext>(state, verify_cast<BlockContainer>(child_box), this);
}
VERIFY(is_block_formatting_context());
VERIFY(!child_box.children_are_inline());
// The child box is a block container that doesn't create its own BFC.
// It will be formatted by this BFC.
if (!child_display.is_flow_inside()) {
dbgln("FIXME: Child box doesn't create BFC, but inside is also not flow! display={}", child_display.to_string());
// HACK: Instead of crashing, create a dummy formatting context that does nothing.
// FIXME: Remove this once it's no longer needed. It currently swallows problem with standalone
// table-related boxes that don't get fixed up by CSS anonymous table box generation.
struct DummyFormattingContext : public FormattingContext {
DummyFormattingContext(LayoutState& state, Box const& box)
: FormattingContext(Type::Block, state, box)
{
}
virtual float automatic_content_height() const override { return 0; };
virtual void run(Box const&, LayoutMode, AvailableSpace const&) override { }
};
return make<DummyFormattingContext>(state, child_box);
}
VERIFY(child_box.is_block_container());
VERIFY(child_display.is_flow_inside());
return {};
}
OwnPtr<FormattingContext> FormattingContext::layout_inside(Box const& child_box, LayoutMode layout_mode, AvailableSpace const& available_space)
{
{
// OPTIMIZATION: If we're doing intrinsic sizing and `child_box` has definite size in both axes,
// we don't need to layout its insides. The size is resolvable without learning
// the metrics of whatever's inside the box.
auto const& used_values = m_state.get(child_box);
if (layout_mode == LayoutMode::IntrinsicSizing
&& used_values.width_constraint == SizeConstraint::None
&& used_values.height_constraint == SizeConstraint::None
&& used_values.has_definite_width()
&& used_values.has_definite_height()) {
return nullptr;
}
}
if (!child_box.can_have_children())
return {};
auto independent_formatting_context = create_independent_formatting_context_if_needed(m_state, child_box);
if (independent_formatting_context)
independent_formatting_context->run(child_box, layout_mode, available_space);
else
run(child_box, layout_mode, available_space);
return independent_formatting_context;
}
float FormattingContext::greatest_child_width(Box const& box)
{
float max_width = 0;
if (box.children_are_inline()) {
for (auto& line_box : m_state.get(box).line_boxes) {
max_width = max(max_width, line_box.width());
}
} else {
box.for_each_child_of_type<Box>([&](Box const& child) {
if (!child.is_absolutely_positioned())
max_width = max(max_width, m_state.get(child).border_box_width());
});
}
return max_width;
}
FormattingContext::ShrinkToFitResult FormattingContext::calculate_shrink_to_fit_widths(Box const& box)
{
return {
.preferred_width = calculate_max_content_width(box),
.preferred_minimum_width = calculate_min_content_width(box),
};
}
static Gfx::FloatSize solve_replaced_size_constraint(LayoutState const& state, float w, float h, ReplacedBox const& box)
{
// 10.4 Minimum and maximum widths: 'min-width' and 'max-width'
auto const& containing_block = *box.containing_block();
auto const& containing_block_state = state.get(containing_block);
auto width_of_containing_block = CSS::Length::make_px(containing_block_state.content_width());
auto height_of_containing_block = CSS::Length::make_px(containing_block_state.content_height());
auto specified_min_width = box.computed_values().min_width().is_auto() ? 0 : box.computed_values().min_width().resolved(box, width_of_containing_block).to_px(box);
auto specified_max_width = box.computed_values().max_width().is_none() ? w : box.computed_values().max_width().resolved(box, width_of_containing_block).to_px(box);
auto specified_min_height = box.computed_values().min_height().is_auto() ? 0 : box.computed_values().min_height().resolved(box, height_of_containing_block).to_px(box);
auto specified_max_height = box.computed_values().max_height().is_none() ? h : box.computed_values().max_height().resolved(box, height_of_containing_block).to_px(box);
auto min_width = min(specified_min_width, specified_max_width);
auto max_width = max(specified_min_width, specified_max_width);
auto min_height = min(specified_min_height, specified_max_height);
auto max_height = max(specified_min_height, specified_max_height);
if (w > max_width)
return { w, max(max_width * h / w, min_height) };
if (w < min_width)
return { max_width, min(min_width * h / w, max_height) };
if (h > max_height)
return { max(max_height * w / h, min_width), max_height };
if (h < min_height)
return { min(min_height * w / h, max_width), min_height };
if ((w > max_width && h > max_height) && (max_width / w < max_height / h))
return { max_width, max(min_height, max_width * h / w) };
if ((w > max_width && h > max_height) && (max_width / w > max_height / h))
return { max(min_width, max_height * w / h), max_height };
if ((w < min_width && h < min_height) && (min_width / w < min_height / h))
return { min(max_width, min_height * w / h), min_height };
if ((w < min_width && h < min_height) && (min_width / w > min_height / h))
return { min_width, min(max_height, min_width * h / w) };
if (w < min_width && h > max_height)
return { min_width, max_height };
if (w > max_width && h < min_height)
return { max_width, min_height };
return { w, h };
}
float FormattingContext::compute_auto_height_for_block_level_element(Box const& box, AvailableSpace const& available_space) const
{
if (creates_block_formatting_context(box))
return compute_auto_height_for_block_formatting_context_root(verify_cast<BlockContainer>(box));
auto const& box_state = m_state.get(box);
auto display = box.display();
if (display.is_flex_inside()) {
// https://drafts.csswg.org/css-flexbox-1/#algo-main-container
// NOTE: The automatic block size of a block-level flex container is its max-content size.
return calculate_max_content_height(box, available_space.width);
}
// https://www.w3.org/TR/CSS22/visudet.html#normal-block
// 10.6.3 Block-level non-replaced elements in normal flow when 'overflow' computes to 'visible'
// The element's height is the distance from its top content edge to the first applicable of the following:
// 1. the bottom edge of the last line box, if the box establishes a inline formatting context with one or more lines
if (box.children_are_inline() && !box_state.line_boxes.is_empty())
return box_state.line_boxes.last().bottom();
// 2. the bottom edge of the bottom (possibly collapsed) margin of its last in-flow child, if the child's bottom margin does not collapse with the element's bottom margin
// FIXME: 3. the bottom border edge of the last in-flow child whose top margin doesn't collapse with the element's bottom margin
if (!box.children_are_inline()) {
for (auto* child_box = box.last_child_of_type<Box>(); child_box; child_box = child_box->previous_sibling_of_type<Box>()) {
if (child_box->is_absolutely_positioned() || child_box->is_floating())
continue;
// FIXME: This is hack. If the last child is a list-item marker box, we ignore it for purposes of height calculation.
// Perhaps markers should not be considered in-flow(?) Perhaps they should always be the first child of the list-item
// box instead of the last child.
if (child_box->is_list_item_marker_box())
continue;
auto const& child_box_state = m_state.get(*child_box);
// Ignore anonymous block containers with no lines. These don't count as in-flow block boxes.
if (child_box->is_anonymous() && child_box->is_block_container() && child_box_state.line_boxes.is_empty())
continue;
// FIXME: Handle margin collapsing.
return max(0.0f, child_box_state.offset.y() + child_box_state.content_height() + child_box_state.margin_box_bottom());
}
}
// 4. zero, otherwise
return 0;
}
// https://www.w3.org/TR/CSS22/visudet.html#root-height
float FormattingContext::compute_auto_height_for_block_formatting_context_root(BlockContainer const& root) const
{
// 10.6.7 'Auto' heights for block formatting context roots
Optional<float> top;
Optional<float> bottom;
if (root.children_are_inline()) {
// If it only has inline-level children, the height is the distance between
// the top content edge and the bottom of the bottommost line box.
auto const& line_boxes = m_state.get(root).line_boxes;
top = 0;
if (!line_boxes.is_empty())
bottom = line_boxes.last().bottom();
} else {
// If it has block-level children, the height is the distance between
// the top margin-edge of the topmost block-level child box
// and the bottom margin-edge of the bottommost block-level child box.
root.for_each_child_of_type<Box>([&](Layout::Box& child_box) {
// Absolutely positioned children are ignored,
// and relatively positioned boxes are considered without their offset.
// Note that the child box may be an anonymous block box.
if (child_box.is_absolutely_positioned())
return IterationDecision::Continue;
// FIXME: This doesn't look right.
if ((root.computed_values().overflow_y() == CSS::Overflow::Visible) && child_box.is_floating())
return IterationDecision::Continue;
auto const& child_box_state = m_state.get(child_box);
float child_box_top = child_box_state.offset.y() - child_box_state.margin_box_top();
float child_box_bottom = child_box_state.offset.y() + child_box_state.content_height() + child_box_state.margin_box_bottom();
if (!top.has_value() || child_box_top < top.value())
top = child_box_top;
if (!bottom.has_value() || child_box_bottom > bottom.value())
bottom = child_box_bottom;
return IterationDecision::Continue;
});
}
// In addition, if the element has any floating descendants
// whose bottom margin edge is below the element's bottom content edge,
// then the height is increased to include those edges.
for (auto* floating_box : m_state.get(root).floating_descendants()) {
// NOTE: Floating box coordinates are relative to their own containing block,
// which may or may not be the BFC root.
auto margin_box = margin_box_rect_in_ancestor_coordinate_space(*floating_box, root, m_state);
float floating_box_bottom_margin_edge = margin_box.bottom() + 1;
if (!bottom.has_value() || floating_box_bottom_margin_edge > bottom.value())
bottom = floating_box_bottom_margin_edge;
}
return max(0.0f, bottom.value_or(0) - top.value_or(0));
}
// 10.3.2 Inline, replaced elements, https://www.w3.org/TR/CSS22/visudet.html#inline-replaced-width
float FormattingContext::tentative_width_for_replaced_element(LayoutState const& state, ReplacedBox const& box, CSS::Size const& computed_width, AvailableSpace const& available_space)
{
// Treat percentages of indefinite containing block widths as 0 (the initial width).
if (computed_width.is_percentage() && !state.get(*box.containing_block()).has_definite_width())
return 0;
auto height_of_containing_block = CSS::Length::make_px(containing_block_height_for(box, state));
auto const& computed_height = box.computed_values().height();
float used_width = computed_width.resolved(box, CSS::Length::make_px(available_space.width.to_px())).to_px(box);
// If 'height' and 'width' both have computed values of 'auto' and the element also has an intrinsic width,
// then that intrinsic width is the used value of 'width'.
if (computed_height.is_auto() && computed_width.is_auto() && box.has_intrinsic_width())
return box.intrinsic_width().value();
// If 'height' and 'width' both have computed values of 'auto' and the element has no intrinsic width,
// but does have an intrinsic height and intrinsic ratio;
// or if 'width' has a computed value of 'auto',
// 'height' has some other computed value, and the element does have an intrinsic ratio; then the used value of 'width' is:
//
// (used height) * (intrinsic ratio)
if ((computed_height.is_auto() && computed_width.is_auto() && !box.has_intrinsic_width() && box.has_intrinsic_height() && box.has_intrinsic_aspect_ratio())
|| (computed_width.is_auto() && !computed_height.is_auto() && box.has_intrinsic_aspect_ratio())) {
return compute_height_for_replaced_element(state, box, available_space) * box.intrinsic_aspect_ratio().value();
}
// If 'height' and 'width' both have computed values of 'auto' and the element has an intrinsic ratio but no intrinsic height or width,
// then the used value of 'width' is undefined in CSS 2.2. However, it is suggested that, if the containing block's width does not itself
// depend on the replaced element's width, then the used value of 'width' is calculated from the constraint equation used for block-level,
// non-replaced elements in normal flow.
// Otherwise, if 'width' has a computed value of 'auto', and the element has an intrinsic width, then that intrinsic width is the used value of 'width'.
if (computed_width.is_auto() && box.has_intrinsic_width())
return box.intrinsic_width().value();
// Otherwise, if 'width' has a computed value of 'auto', but none of the conditions above are met, then the used value of 'width' becomes 300px.
// If 300px is too wide to fit the device, UAs should use the width of the largest rectangle that has a 2:1 ratio and fits the device instead.
if (computed_width.is_auto())
return 300;
return used_width;
}
void FormattingContext::compute_width_for_absolutely_positioned_element(Box const& box, AvailableSpace const& available_space)
{
if (is<ReplacedBox>(box))
compute_width_for_absolutely_positioned_replaced_element(verify_cast<ReplacedBox>(box), available_space);
else
compute_width_for_absolutely_positioned_non_replaced_element(box, available_space);
}
void FormattingContext::compute_height_for_absolutely_positioned_element(Box const& box, AvailableSpace const& available_space)
{
if (is<ReplacedBox>(box))
compute_height_for_absolutely_positioned_replaced_element(static_cast<ReplacedBox const&>(box), available_space);
else
compute_height_for_absolutely_positioned_non_replaced_element(box, available_space);
}
float FormattingContext::compute_width_for_replaced_element(LayoutState const& state, ReplacedBox const& box, AvailableSpace const& available_space)
{
// 10.3.4 Block-level, replaced elements in normal flow...
// 10.3.2 Inline, replaced elements
auto zero_value = CSS::Length::make_px(0);
auto width_of_containing_block_as_length = CSS::Length::make_px(available_space.width.to_px());
auto margin_left = box.computed_values().margin().left().resolved(box, width_of_containing_block_as_length).resolved(box);
auto margin_right = box.computed_values().margin().right().resolved(box, width_of_containing_block_as_length).resolved(box);
// A computed value of 'auto' for 'margin-left' or 'margin-right' becomes a used value of '0'.
if (margin_left.is_auto())
margin_left = zero_value;
if (margin_right.is_auto())
margin_right = zero_value;
auto computed_width = box.computed_values().width();
// 1. The tentative used width is calculated (without 'min-width' and 'max-width')
auto used_width = tentative_width_for_replaced_element(state, box, computed_width, available_space);
// 2. The tentative used width is greater than 'max-width', the rules above are applied again,
// but this time using the computed value of 'max-width' as the computed value for 'width'.
auto computed_max_width = box.computed_values().max_width();
if (!computed_max_width.is_none()) {
if (used_width > computed_max_width.resolved(box, width_of_containing_block_as_length).to_px(box)) {
used_width = tentative_width_for_replaced_element(state, box, computed_max_width, available_space);
}
}
// 3. If the resulting width is smaller than 'min-width', the rules above are applied again,
// but this time using the value of 'min-width' as the computed value for 'width'.
auto computed_min_width = box.computed_values().min_width();
if (!computed_min_width.is_auto()) {
if (used_width < computed_min_width.resolved(box, width_of_containing_block_as_length).to_px(box)) {
used_width = tentative_width_for_replaced_element(state, box, computed_min_width, available_space);
}
}
return used_width;
}
// 10.6.2 Inline replaced elements, block-level replaced elements in normal flow, 'inline-block' replaced elements in normal flow and floating replaced elements
// https://www.w3.org/TR/CSS22/visudet.html#inline-replaced-height
float FormattingContext::tentative_height_for_replaced_element(LayoutState const& state, ReplacedBox const& box, CSS::Size const& computed_height, AvailableSpace const& available_space)
{
// Treat percentages of indefinite containing block heights as 0 (the initial height).
if (computed_height.is_percentage() && !state.get(*box.containing_block()).has_definite_height())
return 0;
auto const& computed_width = box.computed_values().width();
// If 'height' and 'width' both have computed values of 'auto' and the element also has
// an intrinsic height, then that intrinsic height is the used value of 'height'.
if (computed_width.is_auto() && computed_height.is_auto() && box.has_intrinsic_height())
return box.intrinsic_height().value();
// Otherwise, if 'height' has a computed value of 'auto', and the element has an intrinsic ratio then the used value of 'height' is:
//
// (used width) / (intrinsic ratio)
if (computed_height.is_auto() && box.has_intrinsic_aspect_ratio())
return compute_width_for_replaced_element(state, box, available_space) / box.intrinsic_aspect_ratio().value();
// Otherwise, if 'height' has a computed value of 'auto', and the element has an intrinsic height, then that intrinsic height is the used value of 'height'.
if (computed_height.is_auto() && box.has_intrinsic_height())
return box.intrinsic_height().value();
// Otherwise, if 'height' has a computed value of 'auto', but none of the conditions above are met,
// then the used value of 'height' must be set to the height of the largest rectangle that has a 2:1 ratio, has a height not greater than 150px,
// and has a width not greater than the device width.
if (computed_height.is_auto())
return 150;
return computed_height.resolved(box, CSS::Length::make_px(available_space.height.to_px())).to_px(box);
}
float FormattingContext::compute_height_for_replaced_element(LayoutState const& state, ReplacedBox const& box, AvailableSpace const& available_space)
{
// 10.6.2 Inline replaced elements, block-level replaced elements in normal flow,
// 'inline-block' replaced elements in normal flow and floating replaced elements
auto width_of_containing_block_as_length = CSS::Length::make_px(available_space.width.to_px());
auto height_of_containing_block_as_length = CSS::Length::make_px(available_space.height.to_px());
auto computed_width = box.computed_values().width();
auto computed_height = box.computed_values().height();
float used_height = tentative_height_for_replaced_element(state, box, computed_height, available_space);
if (computed_width.is_auto() && computed_height.is_auto() && box.has_intrinsic_aspect_ratio()) {
float w = tentative_width_for_replaced_element(state, box, computed_width, available_space);
float h = used_height;
used_height = solve_replaced_size_constraint(state, w, h, box).height();
}
return used_height;
}
void FormattingContext::compute_width_for_absolutely_positioned_non_replaced_element(Box const& box, AvailableSpace const& available_space)
{
auto width_of_containing_block = available_space.width.to_px();
auto width_of_containing_block_as_length = CSS::Length::make_px(width_of_containing_block);
auto& computed_values = box.computed_values();
auto zero_value = CSS::Length::make_px(0);
auto margin_left = CSS::Length::make_auto();
auto margin_right = CSS::Length::make_auto();
auto const border_left = computed_values.border_left().width;
auto const border_right = computed_values.border_right().width;
auto const padding_left = computed_values.padding().left().resolved(box, width_of_containing_block_as_length).to_px(box);
auto const padding_right = computed_values.padding().right().resolved(box, width_of_containing_block_as_length).to_px(box);
auto try_compute_width = [&](auto const& a_width) {
margin_left = computed_values.margin().left().resolved(box, width_of_containing_block_as_length).resolved(box);
margin_right = computed_values.margin().right().resolved(box, width_of_containing_block_as_length).resolved(box);
auto left = computed_values.inset().left().resolved(box, width_of_containing_block_as_length).resolved(box);
auto right = computed_values.inset().right().resolved(box, width_of_containing_block_as_length).resolved(box);
auto width = a_width;
auto solve_for_left = [&] {
return CSS::Length(width_of_containing_block - margin_left.to_px(box) - border_left - padding_left - width.to_px(box) - padding_right - border_right - margin_right.to_px(box) - right.to_px(box), CSS::Length::Type::Px);
};
auto solve_for_width = [&] {
return CSS::Length(width_of_containing_block - left.to_px(box) - margin_left.to_px(box) - border_left - padding_left - padding_right - border_right - margin_right.to_px(box) - right.to_px(box), CSS::Length::Type::Px);
};
auto solve_for_right = [&] {
return CSS::Length(width_of_containing_block - left.to_px(box) - margin_left.to_px(box) - border_left - padding_left - width.to_px(box) - padding_right - border_right - margin_right.to_px(box), CSS::Length::Type::Px);
};
// If all three of 'left', 'width', and 'right' are 'auto':
if (left.is_auto() && width.is_auto() && right.is_auto()) {
// First set any 'auto' values for 'margin-left' and 'margin-right' to 0.
if (margin_left.is_auto())
margin_left = CSS::Length::make_px(0);
if (margin_right.is_auto())
margin_right = CSS::Length::make_px(0);
// Then, if the 'direction' property of the element establishing the static-position containing block
// is 'ltr' set 'left' to the static position and apply rule number three below;
// otherwise, set 'right' to the static position and apply rule number one below.
// FIXME: This is very hackish.
left = CSS::Length::make_px(0);
goto Rule3;
}
if (!left.is_auto() && !width.is_auto() && !right.is_auto()) {
// FIXME: This should be solved in a more complicated way.
return width;
}
if (margin_left.is_auto())
margin_left = CSS::Length::make_px(0);
if (margin_right.is_auto())
margin_right = CSS::Length::make_px(0);
// 1. 'left' and 'width' are 'auto' and 'right' is not 'auto',
// then the width is shrink-to-fit. Then solve for 'left'
if (left.is_auto() && width.is_auto() && !right.is_auto()) {
auto result = calculate_shrink_to_fit_widths(box);
solve_for_left();
auto available_width = solve_for_width();
width = CSS::Length(min(max(result.preferred_minimum_width, available_width.to_px(box)), result.preferred_width), CSS::Length::Type::Px);
}
// 2. 'left' and 'right' are 'auto' and 'width' is not 'auto',
// then if the 'direction' property of the element establishing
// the static-position containing block is 'ltr' set 'left'
// to the static position, otherwise set 'right' to the static position.
// Then solve for 'left' (if 'direction is 'rtl') or 'right' (if 'direction' is 'ltr').
else if (left.is_auto() && right.is_auto() && !width.is_auto()) {
// FIXME: Check direction
// FIXME: Use the static-position containing block
left = zero_value;
right = solve_for_right();
}
// 3. 'width' and 'right' are 'auto' and 'left' is not 'auto',
// then the width is shrink-to-fit. Then solve for 'right'
else if (width.is_auto() && right.is_auto() && !left.is_auto()) {
Rule3:
auto result = calculate_shrink_to_fit_widths(box);
auto available_width = solve_for_width();
width = CSS::Length(min(max(result.preferred_minimum_width, available_width.to_px(box)), result.preferred_width), CSS::Length::Type::Px);
right = solve_for_right();
}
// 4. 'left' is 'auto', 'width' and 'right' are not 'auto', then solve for 'left'
else if (left.is_auto() && !width.is_auto() && !right.is_auto()) {
left = solve_for_left();
}
// 5. 'width' is 'auto', 'left' and 'right' are not 'auto', then solve for 'width'
else if (width.is_auto() && !left.is_auto() && !right.is_auto()) {
width = solve_for_width();
}
// 6. 'right' is 'auto', 'left' and 'width' are not 'auto', then solve for 'right'
else if (right.is_auto() && !left.is_auto() && !width.is_auto()) {
right = solve_for_right();
}
return width;
};
auto specified_width = computed_values.width().resolved(box, width_of_containing_block_as_length).resolved(box);
// 1. The tentative used width is calculated (without 'min-width' and 'max-width')
auto used_width = try_compute_width(specified_width);
// 2. The tentative used width is greater than 'max-width', the rules above are applied again,
// but this time using the computed value of 'max-width' as the computed value for 'width'.
if (!computed_values.max_width().is_none()) {
auto max_width = computed_values.max_width().resolved(box, width_of_containing_block_as_length).resolved(box);
if (used_width.to_px(box) > max_width.to_px(box)) {
used_width = try_compute_width(max_width);
}
}
// 3. If the resulting width is smaller than 'min-width', the rules above are applied again,
// but this time using the value of 'min-width' as the computed value for 'width'.
if (!computed_values.min_width().is_auto()) {
auto min_width = computed_values.min_width().resolved(box, width_of_containing_block_as_length).resolved(box);
if (used_width.to_px(box) < min_width.to_px(box)) {
used_width = try_compute_width(min_width);
}
}
auto& box_state = m_state.get_mutable(box);
box_state.set_content_width(used_width.to_px(box));
box_state.margin_left = margin_left.to_px(box);
box_state.margin_right = margin_right.to_px(box);
box_state.border_left = border_left;
box_state.border_right = border_right;
box_state.padding_left = padding_left;
box_state.padding_right = padding_right;
}
void FormattingContext::compute_width_for_absolutely_positioned_replaced_element(ReplacedBox const& box, AvailableSpace const& available_space)
{
// 10.3.8 Absolutely positioned, replaced elements
// The used value of 'width' is determined as for inline replaced elements.
// FIXME: This const_cast is gross.
const_cast<ReplacedBox&>(box).prepare_for_replaced_layout();
m_state.get_mutable(box).set_content_width(compute_width_for_replaced_element(m_state, box, available_space));
}
// https://www.w3.org/TR/CSS22/visudet.html#abs-non-replaced-height
void FormattingContext::compute_height_for_absolutely_positioned_non_replaced_element(Box const& box, AvailableSpace const& available_space)
{
// 10.6.4 Absolutely positioned, non-replaced elements
// FIXME: The section below is partly on-spec, partly ad-hoc.
auto& computed_values = box.computed_values();
auto width_of_containing_block = containing_block_width_for(box);
auto height_of_containing_block = available_space.height.to_px();
auto width_of_containing_block_as_length = CSS::Length::make_px(width_of_containing_block);
auto height_of_containing_block_as_length = CSS::Length::make_px(height_of_containing_block);
auto const& computed_top = computed_values.inset().top();
auto const& computed_bottom = computed_values.inset().bottom();
auto const& computed_height = computed_values.height();
auto const& computed_min_height = computed_values.min_height();
auto const& computed_max_height = computed_values.max_height();
auto used_top = computed_top.resolved(box, height_of_containing_block_as_length).resolved(box).to_px(box);
auto used_bottom = computed_bottom.resolved(box, height_of_containing_block_as_length).resolved(box).to_px(box);
auto tentative_height = CSS::Length::make_auto();
if (!computed_height.is_auto())
tentative_height = computed_values.height().resolved(box, height_of_containing_block_as_length).resolved(box);
auto& box_state = m_state.get_mutable(box);
box_state.margin_top = computed_values.margin().top().resolved(box, width_of_containing_block_as_length).to_px(box);
box_state.margin_bottom = computed_values.margin().bottom().resolved(box, width_of_containing_block_as_length).to_px(box);
box_state.border_top = computed_values.border_top().width;
box_state.border_bottom = computed_values.border_bottom().width;
box_state.padding_top = computed_values.padding().top().resolved(box, width_of_containing_block_as_length).to_px(box);
box_state.padding_bottom = computed_values.padding().bottom().resolved(box, width_of_containing_block_as_length).to_px(box);
if (computed_height.is_auto() && computed_top.is_auto() && computed_bottom.is_auto()) {
tentative_height = CSS::Length(compute_auto_height_for_block_level_element(box, available_space), CSS::Length::Type::Px);
}
else if (computed_height.is_auto() && !computed_top.is_auto() && computed_bottom.is_auto()) {
tentative_height = CSS::Length(compute_auto_height_for_block_level_element(box, available_space), CSS::Length::Type::Px);
box_state.inset_bottom = height_of_containing_block - tentative_height.to_px(box) - used_top - box_state.margin_top - box_state.padding_top - box_state.border_top - box_state.margin_bottom - box_state.padding_bottom - box_state.border_bottom;
}
else if (computed_height.is_auto() && !computed_top.is_auto() && !computed_bottom.is_auto()) {
tentative_height = CSS::Length(height_of_containing_block - used_top - box_state.margin_top - box_state.padding_top - box_state.border_top - used_bottom - box_state.margin_bottom - box_state.padding_bottom - box_state.border_bottom, CSS::Length::Type::Px);
}
float used_height = tentative_height.to_px(box);
if (!computed_max_height.is_none())
used_height = min(used_height, computed_max_height.resolved(box, height_of_containing_block_as_length).resolved(box).to_px(box));
if (!computed_min_height.is_auto())
used_height = max(used_height, computed_min_height.resolved(box, height_of_containing_block_as_length).resolved(box).to_px(box));
box_state.set_content_height(used_height);
}
// NOTE: This is different from content_box_rect_in_ancestor_coordinate_space() as this does *not* follow the containing block chain up, but rather the parent() chain.
static Gfx::FloatRect content_box_rect_in_static_position_ancestor_coordinate_space(Box const& box, Box const& ancestor_box, LayoutState const& state)
{
auto rect = content_box_rect(box, state);
if (&box == &ancestor_box)
return rect;
for (auto const* current = box.parent(); current; current = current->parent()) {
if (current == &ancestor_box)
return rect;
auto const& current_state = state.get(static_cast<Box const&>(*current));
rect.translate_by(current_state.offset);
}
// If we get here, ancestor_box was not an ancestor of `box`!
VERIFY_NOT_REACHED();
}
// https://www.w3.org/TR/css-position-3/#staticpos-rect
Gfx::FloatPoint FormattingContext::calculate_static_position(Box const& box) const
{
// NOTE: This is very ad-hoc.
// The purpose of this function is to calculate the approximate position that `box`
// would have had if it were position:static.
float x = 0.0f;
float y = 0.0f;
VERIFY(box.parent());
if (box.parent()->children_are_inline()) {
// We're an abspos box with inline siblings. This is gonna get messy!
if (auto* sibling = box.previous_sibling()) {
// Hard case: there's a previous sibling. This means there's already inline content
// preceding the hypothetical static position of `box` within its containing block.
// If we had been position:static, that inline content would have been wrapped in
// anonymous block box, so now we get to imagine what the world might have looked like
// in that scenario..
// Basically, we find its last associated line box fragment and place `box` under it.
// FIXME: I'm 100% sure this can be smarter, better and faster.
LineBoxFragment const* last_fragment = nullptr;
auto& cb_state = m_state.get(*sibling->containing_block());
for (auto& line_box : cb_state.line_boxes) {
for (auto& fragment : line_box.fragments()) {
if (&fragment.layout_node() == sibling)
last_fragment = &fragment;
}
}
if (last_fragment) {
y = last_fragment->offset().y() + last_fragment->height();
}
} else {
// Easy case: no previous sibling, we're at the top of the containing block.
}
} else {
// We're among block siblings, Y can be calculated easily.
y = compute_box_y_position_with_respect_to_siblings(box);
}
auto offset_to_static_parent = content_box_rect_in_static_position_ancestor_coordinate_space(box, *box.containing_block(), m_state);
return offset_to_static_parent.location().translated(x, y);
}
void FormattingContext::layout_absolutely_positioned_element(Box const& box, AvailableSpace const& available_space)
{
auto& containing_block_state = m_state.get_mutable(*box.containing_block());
auto& box_state = m_state.get_mutable(box);
auto width_of_containing_block = available_space.width.to_px();
auto height_of_containing_block = available_space.height.to_px();
auto width_of_containing_block_as_length = CSS::Length::make_px(width_of_containing_block);
auto height_of_containing_block_as_length = CSS::Length::make_px(height_of_containing_block);
auto specified_width = box.computed_values().width().resolved(box, width_of_containing_block_as_length).resolved(box);
compute_width_for_absolutely_positioned_element(box, available_space);
auto independent_formatting_context = layout_inside(box, LayoutMode::Normal, box_state.available_inner_space_or_constraints_from(available_space));
compute_height_for_absolutely_positioned_element(box, available_space);
box_state.margin_left = box.computed_values().margin().left().resolved(box, width_of_containing_block_as_length).to_px(box);
box_state.margin_top = box.computed_values().margin().top().resolved(box, width_of_containing_block_as_length).to_px(box);
box_state.margin_right = box.computed_values().margin().right().resolved(box, width_of_containing_block_as_length).to_px(box);
box_state.margin_bottom = box.computed_values().margin().bottom().resolved(box, width_of_containing_block_as_length).to_px(box);
box_state.border_left = box.computed_values().border_left().width;
box_state.border_right = box.computed_values().border_right().width;
box_state.border_top = box.computed_values().border_top().width;
box_state.border_bottom = box.computed_values().border_bottom().width;
auto const& computed_left = box.computed_values().inset().left();
auto const& computed_right = box.computed_values().inset().right();
auto const& computed_top = box.computed_values().inset().top();
auto const& computed_bottom = box.computed_values().inset().bottom();
box_state.inset_left = computed_left.resolved(box, width_of_containing_block_as_length).to_px(box);
box_state.inset_top = computed_top.resolved(box, height_of_containing_block_as_length).to_px(box);
box_state.inset_right = computed_right.resolved(box, width_of_containing_block_as_length).to_px(box);
box_state.inset_bottom = computed_bottom.resolved(box, height_of_containing_block_as_length).to_px(box);
if (computed_left.is_auto() && box.computed_values().width().is_auto() && computed_right.is_auto()) {
if (box.computed_values().margin().left().is_auto())
box_state.margin_left = 0;
if (box.computed_values().margin().right().is_auto())
box_state.margin_right = 0;
}
auto static_position = calculate_static_position(box);
Gfx::FloatPoint used_offset;
if (!computed_left.is_auto()) {
float x_offset = box_state.inset_left
+ box_state.border_box_left();
used_offset.set_x(x_offset + box_state.margin_left);
} else if (!computed_right.is_auto()) {
float x_offset = 0
- box_state.inset_right
- box_state.border_box_right();
used_offset.set_x(width_of_containing_block + x_offset - box_state.content_width() - box_state.margin_right);
} else {
float x_offset = box_state.margin_box_left()
+ static_position.x();
used_offset.set_x(x_offset);
}
if (!computed_top.is_auto()) {
float y_offset = box_state.inset_top
+ box_state.border_box_top();
used_offset.set_y(y_offset + box_state.margin_top);
} else if (!computed_bottom.is_auto()) {
float y_offset = 0
- box_state.inset_bottom
- box_state.border_box_bottom();
used_offset.set_y(height_of_containing_block + y_offset - box_state.content_height() - box_state.margin_bottom);
} else {
float y_offset = box_state.margin_box_top()
+ static_position.y();
used_offset.set_y(y_offset);
}
// NOTE: Absolutely positioned boxes are relative to the *padding edge* of the containing block.
used_offset.translate_by(-containing_block_state.padding_left, -containing_block_state.padding_top);
box_state.set_content_offset(used_offset);
if (independent_formatting_context)
independent_formatting_context->parent_context_did_dimension_child_root_box();
}
void FormattingContext::compute_height_for_absolutely_positioned_replaced_element(ReplacedBox const& box, AvailableSpace const& available_space)
{
// 10.6.5 Absolutely positioned, replaced elements
// The used value of 'height' is determined as for inline replaced elements.
m_state.get_mutable(box).set_content_height(compute_height_for_replaced_element(m_state, box, available_space));
}
// https://www.w3.org/TR/css-position-3/#relpos-insets
void FormattingContext::compute_inset(Box const& box)
{
if (box.computed_values().position() != CSS::Position::Relative)
return;
auto resolve_two_opposing_insets = [&](CSS::LengthPercentage const& computed_start, CSS::LengthPercentage const& computed_end, float& used_start, float& used_end, float reference_for_percentage) {
auto resolved_first = computed_start.resolved(box, CSS::Length::make_px(reference_for_percentage)).resolved(box);
auto resolved_second = computed_end.resolved(box, CSS::Length::make_px(reference_for_percentage)).resolved(box);
if (resolved_first.is_auto() && resolved_second.is_auto()) {
// If opposing inset properties in an axis both compute to auto (their initial values),
// their used values are zero (i.e., the boxes stay in their original position in that axis).
used_start = 0;
used_end = 0;
} else if (resolved_first.is_auto() || resolved_second.is_auto()) {
// If only one is auto, its used value becomes the negation of the other, and the box is shifted by the specified amount.
if (resolved_first.is_auto()) {
used_end = resolved_second.to_px(box);
used_start = 0 - used_end;
} else {
used_start = resolved_first.to_px(box);
used_end = 0 - used_start;
}
} else {
// If neither is auto, the position is over-constrained; (with respect to the writing mode of its containing block)
// the computed end side value is ignored, and its used value becomes the negation of the start side.
used_start = resolved_first.to_px(box);
used_end = 0 - used_start;
}
};
auto& box_state = m_state.get_mutable(box);
auto const& computed_values = box.computed_values();
// FIXME: Respect the containing block's writing-mode.
resolve_two_opposing_insets(computed_values.inset().left(), computed_values.inset().right(), box_state.inset_left, box_state.inset_right, containing_block_width_for(box));
resolve_two_opposing_insets(computed_values.inset().top(), computed_values.inset().bottom(), box_state.inset_top, box_state.inset_bottom, containing_block_height_for(box));
}
float FormattingContext::calculate_fit_content_size(float min_content_size, float max_content_size, AvailableSize const& available_size) const
{
// If the available space in a given axis is definite, equal to clamp(min-content size, stretch-fit size, max-content size)
// (i.e. max(min-content size, min(max-content size, stretch-fit size))).
if (available_size.is_definite()) {
// FIXME: Compute the real stretch-fit size.
auto stretch_fit_size = available_size.to_px();
auto s = max(min_content_size, min(max_content_size, stretch_fit_size));
return s;
}
// When sizing under a min-content constraint, equal to the min-content size.
if (available_size.is_min_content())
return min_content_size;
// Otherwise, equal to the max-content size in that axis.
return max_content_size;
}
float FormattingContext::calculate_fit_content_width(Layout::Box const& box, AvailableSpace const& available_space) const
{
// When sizing under a min-content constraint, equal to the min-content size.
// NOTE: We check this first, to avoid needlessly calculating the max-content size.
if (available_space.width.is_min_content())
return calculate_min_content_width(box);
if (available_space.width.is_max_content())
return calculate_max_content_width(box);
return calculate_fit_content_size(calculate_min_content_width(box), calculate_max_content_width(box), available_space.width);
}
float FormattingContext::calculate_fit_content_height(Layout::Box const& box, AvailableSpace const& available_space) const
{
// When sizing under a min-content constraint, equal to the min-content size.
// NOTE: We check this first, to avoid needlessly calculating the max-content size.
if (available_space.height.is_min_content())
return calculate_min_content_height(box, available_space.width);
if (available_space.height.is_max_content())
return calculate_max_content_height(box, available_space.width);
return calculate_fit_content_size(calculate_min_content_height(box, available_space.width), calculate_max_content_height(box, available_space.width), available_space.height);
}
float FormattingContext::calculate_min_content_width(Layout::Box const& box) const
{
if (box.has_intrinsic_width())
return *box.intrinsic_width();
auto& root_state = m_state.m_root;
auto& cache = *root_state.intrinsic_sizes.ensure(&box, [] { return adopt_own(*new LayoutState::IntrinsicSizes); });
if (cache.min_content_width.has_value())
return *cache.min_content_width;
LayoutState throwaway_state(&m_state);
auto& box_state = throwaway_state.get_mutable(box);
box_state.width_constraint = SizeConstraint::MinContent;
auto context = const_cast<FormattingContext*>(this)->create_independent_formatting_context_if_needed(throwaway_state, box);
VERIFY(context);
auto available_width = AvailableSize::make_min_content();
auto available_height = AvailableSize::make_indefinite();
context->run(box, LayoutMode::IntrinsicSizing, AvailableSpace(available_width, available_height));
if (context->type() == FormattingContext::Type::Flex) {
cache.min_content_width = box_state.content_width();
} else {
cache.min_content_width = context->greatest_child_width(box);
}
if (!isfinite(*cache.min_content_width)) {
// HACK: If layout calculates a non-finite result, something went wrong. Force it to zero and log a little whine.
dbgln("FIXME: Calculated non-finite min-content width for {}", box.debug_description());
cache.min_content_width = 0;
}
return *cache.min_content_width;
}
float FormattingContext::calculate_max_content_width(Layout::Box const& box) const
{
if (box.has_intrinsic_width())
return *box.intrinsic_width();
auto& root_state = m_state.m_root;
auto& cache = *root_state.intrinsic_sizes.ensure(&box, [] { return adopt_own(*new LayoutState::IntrinsicSizes); });
if (cache.max_content_width.has_value())
return *cache.max_content_width;
LayoutState throwaway_state(&m_state);
auto& box_state = throwaway_state.get_mutable(box);
box_state.width_constraint = SizeConstraint::MaxContent;
auto context = const_cast<FormattingContext*>(this)->create_independent_formatting_context_if_needed(throwaway_state, box);
VERIFY(context);
auto available_width = AvailableSize::make_max_content();
auto available_height = AvailableSize::make_indefinite();
context->run(box, LayoutMode::IntrinsicSizing, AvailableSpace(available_width, available_height));
if (context->type() == FormattingContext::Type::Flex) {
cache.max_content_width = box_state.content_width();
} else {
cache.max_content_width = context->greatest_child_width(box);
}
if (!isfinite(*cache.max_content_width)) {
// HACK: If layout calculates a non-finite result, something went wrong. Force it to zero and log a little whine.
dbgln("FIXME: Calculated non-finite max-content width for {}", box.debug_description());
cache.max_content_width = 0;
}
return *cache.max_content_width;
}
float FormattingContext::calculate_min_content_height(Layout::Box const& box, AvailableSize const& available_width) const
{
if (box.has_intrinsic_height())
return *box.intrinsic_height();
auto& root_state = m_state.m_root;
auto& cache = *root_state.intrinsic_sizes.ensure(&box, [] { return adopt_own(*new LayoutState::IntrinsicSizes); });
if (cache.min_content_height.has_value())
return *cache.min_content_height;
LayoutState throwaway_state(&m_state);
auto& box_state = throwaway_state.get_mutable(box);
box_state.height_constraint = SizeConstraint::MinContent;
auto context = const_cast<FormattingContext*>(this)->create_independent_formatting_context_if_needed(throwaway_state, box);
VERIFY(context);
context->run(box, LayoutMode::IntrinsicSizing, AvailableSpace(available_width, AvailableSize::make_min_content()));
cache.min_content_height = context->automatic_content_height();
if (!isfinite(*cache.min_content_height)) {
// HACK: If layout calculates a non-finite result, something went wrong. Force it to zero and log a little whine.
dbgln("FIXME: Calculated non-finite min-content height for {}", box.debug_description());
cache.min_content_height = 0;
}
return *cache.min_content_height;
}
float FormattingContext::calculate_max_content_height(Layout::Box const& box, AvailableSize const& available_width) const
{
if (box.has_intrinsic_height())
return *box.intrinsic_height();
auto& root_state = m_state.m_root;
auto& cache = *root_state.intrinsic_sizes.ensure(&box, [] { return adopt_own(*new LayoutState::IntrinsicSizes); });
if (cache.max_content_height.has_value())
return *cache.max_content_height;
LayoutState throwaway_state(&m_state);
auto& box_state = throwaway_state.get_mutable(box);
box_state.height_constraint = SizeConstraint::MaxContent;
auto context = const_cast<FormattingContext*>(this)->create_independent_formatting_context_if_needed(throwaway_state, box);
VERIFY(context);
context->run(box, LayoutMode::IntrinsicSizing, AvailableSpace(available_width, AvailableSize::make_max_content()));
cache.max_content_height = context->automatic_content_height();
if (!isfinite(*cache.max_content_height)) {
// HACK: If layout calculates a non-finite result, something went wrong. Force it to zero and log a little whine.
dbgln("FIXME: Calculated non-finite max-content height for {}", box.debug_description());
cache.max_content_height = 0;
}
return *cache.max_content_height;
}
float FormattingContext::containing_block_width_for(Box const& box, LayoutState const& state)
{
auto& containing_block_state = state.get(*box.containing_block());
auto& box_state = state.get(box);
switch (box_state.width_constraint) {
case SizeConstraint::MinContent:
return 0;
case SizeConstraint::MaxContent:
return INFINITY;
case SizeConstraint::None:
return containing_block_state.content_width();
}
VERIFY_NOT_REACHED();
}
float FormattingContext::containing_block_height_for(Box const& box, LayoutState const& state)
{
auto& containing_block_state = state.get(*box.containing_block());
auto& box_state = state.get(box);
switch (box_state.height_constraint) {
case SizeConstraint::MinContent:
return 0;
case SizeConstraint::MaxContent:
return INFINITY;
case SizeConstraint::None:
return containing_block_state.content_height();
}
VERIFY_NOT_REACHED();
}
static Box const* previous_block_level_sibling(Box const& box)
{
for (auto* sibling = box.previous_sibling_of_type<Box>(); sibling; sibling = sibling->previous_sibling_of_type<Box>()) {
if (sibling->display().is_block_outside())
return sibling;
}
return nullptr;
}
float FormattingContext::compute_box_y_position_with_respect_to_siblings(Box const& box) const
{
auto const& box_state = m_state.get(box);
float y = box_state.border_box_top();
Vector<float> collapsible_margins;
auto* relevant_sibling = previous_block_level_sibling(box);
while (relevant_sibling != nullptr) {
if (!relevant_sibling->is_absolutely_positioned() && !relevant_sibling->is_floating()) {
auto const& relevant_sibling_state = m_state.get(*relevant_sibling);
collapsible_margins.append(relevant_sibling_state.margin_bottom);
// NOTE: Empty (0-height) preceding siblings have their margins collapsed with *their* preceding sibling, etc.
if (relevant_sibling_state.border_box_height() > 0)
break;
collapsible_margins.append(relevant_sibling_state.margin_top);
}
relevant_sibling = previous_block_level_sibling(*relevant_sibling);
}
if (relevant_sibling) {
// Collapse top margin with the collapsed margin(s) of preceding siblings.
collapsible_margins.append(box_state.margin_top);
float smallest_margin = 0;
float largest_margin = 0;
size_t negative_margin_count = 0;
for (auto margin : collapsible_margins) {
if (margin < 0)
++negative_margin_count;
largest_margin = max(largest_margin, margin);
smallest_margin = min(smallest_margin, margin);
}
float collapsed_margin = 0;
if (negative_margin_count == collapsible_margins.size()) {
// When all margins are negative, the size of the collapsed margin is the smallest (most negative) margin.
collapsed_margin = smallest_margin;
} else if (negative_margin_count > 0) {
// When negative margins are involved, the size of the collapsed margin is the sum of the largest positive margin and the smallest (most negative) negative margin.
collapsed_margin = largest_margin + smallest_margin;
} else {
// Otherwise, collapse all the adjacent margins by using only the largest one.
collapsed_margin = largest_margin;
}
auto const& relevant_sibling_state = m_state.get(*relevant_sibling);
return y + relevant_sibling_state.offset.y()
+ relevant_sibling_state.content_height()
+ relevant_sibling_state.border_box_bottom()
+ collapsed_margin;
} else {
return y + box_state.margin_top;
}
}
// https://drafts.csswg.org/css-sizing-3/#stretch-fit-size
float FormattingContext::calculate_stretch_fit_width(Box const& box, AvailableSize const& available_width) const
{
// The size a box would take if its outer size filled the available space in the given axis;
// in other words, the stretch fit into the available space, if that is definite.
// Undefined if the available space is indefinite.
auto const& box_state = m_state.get(box);
return available_width.to_px()
- box_state.margin_left
- box_state.margin_right
- box_state.padding_left
- box_state.padding_right
- box_state.border_left
- box_state.border_right;
}
}