ladybird/Kernel/VM/Region.h
Brian Gianforcaro eaef57443c Kernel: Make MemoryManager API type-safe for Region::Access enum
Increase type-safety moving the MemoryManager APIs which take a
Region::Access to actually use that type instead of a `u8`.

Eventually the actually m_access can be moved there as well, but
I hit some weird bug where it wasn't using the correct operators
in `set_access_bit(..)` even though it's declared (and tested).
Something to fix-up later.
2021-03-08 18:47:40 +01:00

319 lines
10 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/EnumBits.h>
#include <AK/InlineLinkedList.h>
#include <AK/String.h>
#include <AK/WeakPtr.h>
#include <AK/Weakable.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Heap/SlabAllocator.h>
#include <Kernel/VM/PageFaultResponse.h>
#include <Kernel/VM/PurgeablePageRanges.h>
#include <Kernel/VM/RangeAllocator.h>
#include <Kernel/VM/VMObject.h>
namespace Kernel {
class Inode;
class VMObject;
enum class ShouldFlushTLB {
No,
Yes,
};
class Region final
: public InlineLinkedListNode<Region>
, public Weakable<Region>
, public PurgeablePageRanges {
friend class MemoryManager;
MAKE_SLAB_ALLOCATED(Region)
public:
enum Access : u8 {
None = 0,
Read = 1,
Write = 2,
Execute = 4,
HasBeenReadable = 16,
HasBeenWritable = 32,
HasBeenExecutable = 64,
};
enum class Cacheable {
No = 0,
Yes,
};
static NonnullOwnPtr<Region> create_user_accessible(Process*, const Range&, NonnullRefPtr<VMObject>, size_t offset_in_vmobject, String name, Region::Access access, Cacheable, bool shared);
static NonnullOwnPtr<Region> create_kernel_only(const Range&, NonnullRefPtr<VMObject>, size_t offset_in_vmobject, String name, Region::Access access, Cacheable = Cacheable::Yes);
~Region();
const Range& range() const { return m_range; }
VirtualAddress vaddr() const { return m_range.base(); }
size_t size() const { return m_range.size(); }
bool is_readable() const { return m_access & Access::Read; }
bool is_writable() const { return m_access & Access::Write; }
bool is_executable() const { return m_access & Access::Execute; }
bool has_been_readable() const { return m_access & Access::HasBeenReadable; }
bool has_been_writable() const { return m_access & Access::HasBeenWritable; }
bool has_been_executable() const { return m_access & Access::HasBeenExecutable; }
bool is_cacheable() const { return m_cacheable; }
const String& name() const { return m_name; }
Region::Access access() const { return static_cast<Region::Access>(m_access); }
void set_name(String name) { m_name = move(name); }
const VMObject& vmobject() const { return *m_vmobject; }
VMObject& vmobject() { return *m_vmobject; }
void set_vmobject(NonnullRefPtr<VMObject>&&);
bool is_shared() const { return m_shared; }
void set_shared(bool shared) { m_shared = shared; }
bool is_stack() const { return m_stack; }
void set_stack(bool stack) { m_stack = stack; }
bool is_mmap() const { return m_mmap; }
void set_mmap(bool mmap) { m_mmap = mmap; }
bool is_user() const { return !is_kernel(); }
bool is_kernel() const { return vaddr().get() < 0x00800000 || vaddr().get() >= 0xc0000000; }
PageFaultResponse handle_fault(const PageFault&, ScopedSpinLock<RecursiveSpinLock>&);
OwnPtr<Region> clone(Process&);
bool contains(VirtualAddress vaddr) const
{
return m_range.contains(vaddr);
}
bool contains(const Range& range) const
{
return m_range.contains(range);
}
unsigned page_index_from_address(VirtualAddress vaddr) const
{
return (vaddr - m_range.base()).get() / PAGE_SIZE;
}
VirtualAddress vaddr_from_page_index(size_t page_index) const
{
return vaddr().offset(page_index * PAGE_SIZE);
}
bool translate_vmobject_page(size_t& index) const
{
auto first_index = first_page_index();
if (index < first_index) {
index = first_index;
return false;
}
index -= first_index;
auto total_page_count = this->page_count();
if (index >= total_page_count) {
index = first_index + total_page_count - 1;
return false;
}
return true;
}
bool translate_vmobject_page_range(size_t& index, size_t& page_count) const
{
auto first_index = first_page_index();
if (index < first_index) {
auto delta = first_index - index;
index = first_index;
if (delta >= page_count) {
page_count = 0;
return false;
}
page_count -= delta;
}
index -= first_index;
auto total_page_count = this->page_count();
if (index + page_count > total_page_count) {
page_count = total_page_count - index;
if (page_count == 0)
return false;
}
return true;
}
ALWAYS_INLINE size_t translate_to_vmobject_page(size_t page_index) const
{
return first_page_index() + page_index;
}
size_t first_page_index() const
{
return m_offset_in_vmobject / PAGE_SIZE;
}
size_t page_count() const
{
return size() / PAGE_SIZE;
}
const PhysicalPage* physical_page(size_t index) const
{
VERIFY(index < page_count());
return vmobject().physical_pages()[first_page_index() + index];
}
RefPtr<PhysicalPage>& physical_page_slot(size_t index)
{
VERIFY(index < page_count());
return vmobject().physical_pages()[first_page_index() + index];
}
size_t offset_in_vmobject() const
{
return m_offset_in_vmobject;
}
size_t offset_in_vmobject_from_vaddr(VirtualAddress vaddr) const
{
return m_offset_in_vmobject + vaddr.get() - this->vaddr().get();
}
size_t amount_resident() const;
size_t amount_shared() const;
size_t amount_dirty() const;
bool should_cow(size_t page_index) const;
void set_should_cow(size_t page_index, bool);
size_t cow_pages() const;
void set_readable(bool b) { set_access_bit(Access::Read, b); }
void set_writable(bool b) { set_access_bit(Access::Write, b); }
void set_executable(bool b) { set_access_bit(Access::Execute, b); }
void set_page_directory(PageDirectory&);
bool map(PageDirectory&, ShouldFlushTLB = ShouldFlushTLB::Yes);
enum class ShouldDeallocateVirtualMemoryRange {
No,
Yes,
};
void unmap(ShouldDeallocateVirtualMemoryRange = ShouldDeallocateVirtualMemoryRange::Yes);
void remap();
// For InlineLinkedListNode
Region* m_next { nullptr };
Region* m_prev { nullptr };
bool remap_vmobject_page_range(size_t page_index, size_t page_count);
bool is_volatile(VirtualAddress vaddr, size_t size) const;
enum class SetVolatileError {
Success = 0,
NotPurgeable,
OutOfMemory
};
SetVolatileError set_volatile(VirtualAddress vaddr, size_t size, bool is_volatile, bool& was_purged);
RefPtr<Process> get_owner();
bool is_syscall_region() const { return m_syscall_region; }
void set_syscall_region(bool b) { m_syscall_region = b; }
private:
Region(const Range&, NonnullRefPtr<VMObject>, size_t offset_in_vmobject, String, Region::Access access, Cacheable, bool shared);
bool do_remap_vmobject_page_range(size_t page_index, size_t page_count);
void set_access_bit(Access access, bool b)
{
if (b)
m_access |= access | (access << 4);
else
m_access &= ~access;
}
bool do_remap_vmobject_page(size_t index, bool with_flush = true);
bool remap_vmobject_page(size_t index, bool with_flush = true);
PageFaultResponse handle_cow_fault(size_t page_index);
PageFaultResponse handle_inode_fault(size_t page_index, ScopedSpinLock<RecursiveSpinLock>&);
PageFaultResponse handle_zero_fault(size_t page_index);
bool map_individual_page_impl(size_t page_index);
void register_purgeable_page_ranges();
void unregister_purgeable_page_ranges();
RefPtr<PageDirectory> m_page_directory;
Range m_range;
size_t m_offset_in_vmobject { 0 };
NonnullRefPtr<VMObject> m_vmobject;
String m_name;
u8 m_access { Region::None };
bool m_shared : 1 { false };
bool m_cacheable : 1 { false };
bool m_stack : 1 { false };
bool m_mmap : 1 { false };
bool m_syscall_region : 1 { false };
WeakPtr<Process> m_owner;
};
AK_ENUM_BITWISE_OPERATORS(Region::Access)
inline Region::Access prot_to_region_access_flags(int prot)
{
Region::Access access = Region::Access::None;
if (prot & PROT_READ)
access |= Region::Access::Read;
if (prot & PROT_WRITE)
access |= Region::Access::Write;
if (prot & PROT_EXEC)
access |= Region::Access::Execute;
return access;
}
inline int region_access_flags_to_prot(Region::Access access)
{
int prot = 0;
if (access & Region::Access::Read)
prot |= PROT_READ;
if (access & Region::Access::Write)
prot |= PROT_WRITE;
if (access & Region::Access::Execute)
prot |= PROT_EXEC;
return prot;
}
}