ladybird/Userland/Libraries/LibWeb/Layout/GridFormattingContext.cpp
martinfalisse f3bf01f265 LibWeb: Fix bug in placing row-constrained grid items
For row-constrained items (with a row position defined in the CSS),
should be checking for an available position in that row and not in
another..
2022-10-06 21:16:01 +02:00

1163 lines
63 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2022, Martin Falisse <mfalisse@outlook.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibWeb/DOM/Node.h>
#include <LibWeb/Layout/Box.h>
#include <LibWeb/Layout/GridFormattingContext.h>
namespace Web::Layout {
GridFormattingContext::GridFormattingContext(LayoutState& state, BlockContainer const& block_container, FormattingContext* parent)
: BlockFormattingContext(state, block_container, parent)
{
}
GridFormattingContext::~GridFormattingContext() = default;
void GridFormattingContext::run(Box const& box, LayoutMode, AvailableSpace const& available_space)
{
auto should_skip_is_anonymous_text_run = [&](Box& child_box) -> bool {
if (child_box.is_anonymous() && !child_box.first_child_of_type<BlockContainer>()) {
bool contains_only_white_space = true;
child_box.for_each_in_subtree([&](auto const& node) {
if (!is<TextNode>(node) || !static_cast<TextNode const&>(node).dom_node().data().is_whitespace()) {
contains_only_white_space = false;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
if (contains_only_white_space)
return true;
}
return false;
};
auto maybe_add_column_to_occupation_grid = [](int needed_number_of_columns, Vector<Vector<bool>>& occupation_grid) -> void {
int current_column_count = (int)occupation_grid[0].size();
if (needed_number_of_columns <= current_column_count)
return;
for (auto& occupation_grid_row : occupation_grid)
for (int idx = 0; idx < (needed_number_of_columns + 1) - current_column_count; idx++)
occupation_grid_row.append(false);
};
auto maybe_add_row_to_occupation_grid = [](int needed_number_of_rows, Vector<Vector<bool>>& occupation_grid) -> void {
if (needed_number_of_rows <= (int)occupation_grid.size())
return;
Vector<bool> new_occupation_grid_row;
for (int idx = 0; idx < (int)occupation_grid[0].size(); idx++)
new_occupation_grid_row.append(false);
for (int idx = 0; idx < needed_number_of_rows - (int)occupation_grid.size(); idx++)
occupation_grid.append(new_occupation_grid_row);
};
auto set_occupied_cells = [](int row_start, int row_end, int column_start, int column_end, Vector<Vector<bool>>& occupation_grid) -> void {
for (int row_index = 0; row_index < (int)occupation_grid.size(); row_index++) {
if (row_index >= row_start && row_index < row_end) {
for (int column_index = 0; column_index < (int)occupation_grid[0].size(); column_index++) {
if (column_index >= column_start && column_index < column_end) {
occupation_grid[row_index][column_index] = true;
}
}
}
}
};
// https://drafts.csswg.org/css-grid/#overview-placement
// 2.2. Placing Items
// The contents of the grid container are organized into individual grid items (analogous to
// flex items), which are then assigned to predefined areas in the grid. They can be explicitly
// placed using coordinates through the grid-placement properties or implicitly placed into
// empty areas using auto-placement.
struct PositionedBox {
Box const& box;
int row { 0 };
int row_span { 1 };
int column { 0 };
int column_span { 1 };
float computed_height { 0 };
};
Vector<PositionedBox> positioned_boxes;
Vector<Vector<bool>> occupation_grid;
Vector<bool> occupation_grid_row;
for (int column_index = 0; column_index < max((int)box.computed_values().grid_template_columns().size(), 1); column_index++)
occupation_grid_row.append(false);
for (int row_index = 0; row_index < max((int)box.computed_values().grid_template_rows().size(), 1); row_index++)
occupation_grid.append(occupation_grid_row);
Vector<Box const&> boxes_to_place;
box.for_each_child_of_type<Box>([&](Box& child_box) {
if (should_skip_is_anonymous_text_run(child_box))
return IterationDecision::Continue;
boxes_to_place.append(child_box);
return IterationDecision::Continue;
});
// https://drafts.csswg.org/css-grid/#auto-placement-algo
// 8.5. Grid Item Placement Algorithm
// FIXME: 0. Generate anonymous grid items
// 1. Position anything that's not auto-positioned.
for (size_t i = 0; i < boxes_to_place.size(); i++) {
auto const& child_box = boxes_to_place[i];
if (is_auto_positioned_row(child_box.computed_values().grid_row_start(), child_box.computed_values().grid_row_end())
|| is_auto_positioned_column(child_box.computed_values().grid_column_start(), child_box.computed_values().grid_column_end()))
continue;
int row_start = child_box.computed_values().grid_row_start().raw_value();
int row_end = child_box.computed_values().grid_row_end().raw_value();
int column_start = child_box.computed_values().grid_column_start().raw_value();
int column_end = child_box.computed_values().grid_column_end().raw_value();
// https://drafts.csswg.org/css-grid/#line-placement
// 8.3. Line-based Placement: the grid-row-start, grid-column-start, grid-row-end, and grid-column-end properties
// https://drafts.csswg.org/css-grid/#grid-placement-slot
// FIXME: <custom-ident>
// First attempt to match the grid areas edge to a named grid area: if there is a grid line whose
// line name is <custom-ident>-start (for grid-*-start) / <custom-ident>-end (for grid-*-end),
// contributes the first such line to the grid items placement.
// Note: Named grid areas automatically generate implicitly-assigned line names of this form, so
// specifying grid-row-start: foo will choose the start edge of that named grid area (unless another
// line named foo-start was explicitly specified before it).
// Otherwise, treat this as if the integer 1 had been specified along with the <custom-ident>.
// https://drafts.csswg.org/css-grid/#grid-placement-int
// [ <integer [−∞,1]> | <integer [1,∞]> ] && <custom-ident>?
// Contributes the Nth grid line to the grid items placement. If a negative integer is given, it
// instead counts in reverse, starting from the end edge of the explicit grid.
if (row_end < 0)
row_end = static_cast<int>(occupation_grid.size()) + row_end + 2;
if (column_end < 0)
column_end = static_cast<int>(occupation_grid[0].size()) + column_end + 2;
// If a name is given as a <custom-ident>, only lines with that name are counted. If not enough
// lines with that name exist, all implicit grid lines are assumed to have that name for the purpose
// of finding this position.
// An <integer> value of zero makes the declaration invalid.
// https://drafts.csswg.org/css-grid/#grid-placement-span-int
// span && [ <integer [1,∞]> || <custom-ident> ]
// Contributes a grid span to the grid items placement such that the corresponding edge of the grid
// items grid area is N lines from its opposite edge in the corresponding direction. For example,
// grid-column-end: span 2 indicates the second grid line in the endward direction from the
// grid-column-start line.
int row_span = 1;
int column_span = 1;
if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_span())
row_span = child_box.computed_values().grid_row_end().raw_value();
if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_span())
column_span = child_box.computed_values().grid_column_end().raw_value();
if (child_box.computed_values().grid_row_end().is_position() && child_box.computed_values().grid_row_start().is_span()) {
row_span = child_box.computed_values().grid_row_start().raw_value();
row_start = row_end - row_span;
}
if (child_box.computed_values().grid_column_end().is_position() && child_box.computed_values().grid_column_start().is_span()) {
column_span = child_box.computed_values().grid_column_start().raw_value();
column_start = column_end - column_span;
}
// If a name is given as a <custom-ident>, only lines with that name are counted. If not enough
// lines with that name exist, all implicit grid lines on the side of the explicit grid
// corresponding to the search direction are assumed to have that name for the purpose of counting
// this span.
// https://drafts.csswg.org/css-grid/#grid-placement-auto
// auto
// The property contributes nothing to the grid items placement, indicating auto-placement or a
// default span of one. (See §8 Placing Grid Items, above.)
// https://drafts.csswg.org/css-grid/#grid-placement-errors
// 8.3.1. Grid Placement Conflict Handling
// If the placement for a grid item contains two lines, and the start line is further end-ward than
// the end line, swap the two lines. If the start line is equal to the end line, remove the end
// line.
if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_position()) {
if (row_start > row_end)
swap(row_start, row_end);
if (row_start != row_end)
row_span = row_end - row_start;
}
if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_position()) {
if (column_start > column_end)
swap(column_start, column_end);
if (column_start != column_end)
column_span = column_end - column_start;
}
// If the placement contains two spans, remove the one contributed by the end grid-placement
// property.
if (child_box.computed_values().grid_row_start().is_span() && child_box.computed_values().grid_row_end().is_span())
row_span = child_box.computed_values().grid_row_start().raw_value();
if (child_box.computed_values().grid_column_start().is_span() && child_box.computed_values().grid_column_end().is_span())
column_span = child_box.computed_values().grid_column_start().raw_value();
// FIXME: If the placement contains only a span for a named line, replace it with a span of 1.
row_start -= 1;
column_start -= 1;
positioned_boxes.append({ child_box, row_start, row_span, column_start, column_span });
maybe_add_row_to_occupation_grid(row_start + row_span, occupation_grid);
maybe_add_column_to_occupation_grid(column_start + column_span, occupation_grid);
set_occupied_cells(row_start, row_start + row_span, column_start, column_start + column_span, occupation_grid);
boxes_to_place.remove(i);
i--;
}
// 2. Process the items locked to a given row.
// FIXME: Do "dense" packing
for (size_t i = 0; i < boxes_to_place.size(); i++) {
auto const& child_box = boxes_to_place[i];
if (is_auto_positioned_row(child_box.computed_values().grid_row_start(), child_box.computed_values().grid_row_end()))
continue;
int row_start = child_box.computed_values().grid_row_start().raw_value();
int row_end = child_box.computed_values().grid_row_end().raw_value();
// https://drafts.csswg.org/css-grid/#line-placement
// 8.3. Line-based Placement: the grid-row-start, grid-column-start, grid-row-end, and grid-column-end properties
// https://drafts.csswg.org/css-grid/#grid-placement-slot
// FIXME: <custom-ident>
// First attempt to match the grid areas edge to a named grid area: if there is a grid line whose
// line name is <custom-ident>-start (for grid-*-start) / <custom-ident>-end (for grid-*-end),
// contributes the first such line to the grid items placement.
// Note: Named grid areas automatically generate implicitly-assigned line names of this form, so
// specifying grid-row-start: foo will choose the start edge of that named grid area (unless another
// line named foo-start was explicitly specified before it).
// Otherwise, treat this as if the integer 1 had been specified along with the <custom-ident>.
// https://drafts.csswg.org/css-grid/#grid-placement-int
// [ <integer [−∞,1]> | <integer [1,∞]> ] && <custom-ident>?
// Contributes the Nth grid line to the grid items placement. If a negative integer is given, it
// instead counts in reverse, starting from the end edge of the explicit grid.
if (row_end < 0)
row_end = static_cast<int>(occupation_grid.size()) + row_end + 2;
// If a name is given as a <custom-ident>, only lines with that name are counted. If not enough
// lines with that name exist, all implicit grid lines are assumed to have that name for the purpose
// of finding this position.
// An <integer> value of zero makes the declaration invalid.
// https://drafts.csswg.org/css-grid/#grid-placement-span-int
// span && [ <integer [1,∞]> || <custom-ident> ]
// Contributes a grid span to the grid items placement such that the corresponding edge of the grid
// items grid area is N lines from its opposite edge in the corresponding direction. For example,
// grid-column-end: span 2 indicates the second grid line in the endward direction from the
// grid-column-start line.
int row_span = 1;
if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_span())
row_span = child_box.computed_values().grid_row_end().raw_value();
if (child_box.computed_values().grid_row_end().is_position() && child_box.computed_values().grid_row_start().is_span()) {
row_span = child_box.computed_values().grid_row_start().raw_value();
row_start = row_end - row_span;
}
// If a name is given as a <custom-ident>, only lines with that name are counted. If not enough
// lines with that name exist, all implicit grid lines on the side of the explicit grid
// corresponding to the search direction are assumed to have that name for the purpose of counting
// this span.
// https://drafts.csswg.org/css-grid/#grid-placement-auto
// auto
// The property contributes nothing to the grid items placement, indicating auto-placement or a
// default span of one. (See §8 Placing Grid Items, above.)
// https://drafts.csswg.org/css-grid/#grid-placement-errors
// 8.3.1. Grid Placement Conflict Handling
// If the placement for a grid item contains two lines, and the start line is further end-ward than
// the end line, swap the two lines. If the start line is equal to the end line, remove the end
// line.
if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_position()) {
if (row_start > row_end)
swap(row_start, row_end);
if (row_start != row_end)
row_span = row_end - row_start;
}
// If the placement contains two spans, remove the one contributed by the end grid-placement
// property.
if (child_box.computed_values().grid_row_start().is_span() && child_box.computed_values().grid_row_end().is_span())
row_span = child_box.computed_values().grid_row_start().raw_value();
// FIXME: If the placement contains only a span for a named line, replace it with a span of 1.
row_start -= 1;
maybe_add_row_to_occupation_grid(row_start + row_span, occupation_grid);
int column_start = 0;
auto column_span = child_box.computed_values().grid_column_start().is_span() ? child_box.computed_values().grid_column_start().raw_value() : 1;
bool found_available_column = false;
for (int column_index = column_start; column_index < (int)occupation_grid[0].size(); column_index++) {
if (!occupation_grid[row_start][column_index]) {
found_available_column = true;
column_start = column_index;
break;
}
}
if (!found_available_column) {
column_start = occupation_grid[0].size();
maybe_add_column_to_occupation_grid(column_start + column_span, occupation_grid);
}
set_occupied_cells(row_start, row_start + row_span, column_start, column_start + column_span, occupation_grid);
positioned_boxes.append({ child_box, row_start, row_span, column_start, column_span });
boxes_to_place.remove(i);
i--;
}
// 3. Determine the columns in the implicit grid.
// NOTE: "implicit grid" here is the same as the occupation_grid
// 3.1. Start with the columns from the explicit grid.
// NOTE: Done in step 1.
// 3.2. Among all the items with a definite column position (explicitly positioned items, items
// positioned in the previous step, and items not yet positioned but with a definite column) add
// columns to the beginning and end of the implicit grid as necessary to accommodate those items.
// NOTE: "Explicitly positioned items" and "items positioned in the previous step" done in step 1
// and 2, respectively. Adding columns for "items not yet positioned but with a definite column"
// will be done in step 4.
// 3.3. If the largest column span among all the items without a definite column position is larger
// than the width of the implicit grid, add columns to the end of the implicit grid to accommodate
// that column span.
// NOTE: Done in step 1, 2, and will be done in step 4.
// 4. Position the remaining grid items.
// For each grid item that hasn't been positioned by the previous steps, in order-modified document
// order:
auto auto_placement_cursor_x = 0;
auto auto_placement_cursor_y = 0;
for (size_t i = 0; i < boxes_to_place.size(); i++) {
auto const& child_box = boxes_to_place[i];
// 4.1. For sparse packing:
// FIXME: no distinction made. See #4.2
// 4.1.1. If the item has a definite column position:
if (!is_auto_positioned_column(child_box.computed_values().grid_column_start(), child_box.computed_values().grid_column_end())) {
int column_start = child_box.computed_values().grid_column_start().raw_value();
int column_end = child_box.computed_values().grid_column_end().raw_value();
// https://drafts.csswg.org/css-grid/#line-placement
// 8.3. Line-based Placement: the grid-row-start, grid-column-start, grid-row-end, and grid-column-end properties
// https://drafts.csswg.org/css-grid/#grid-placement-slot
// FIXME: <custom-ident>
// First attempt to match the grid areas edge to a named grid area: if there is a grid line whose
// line name is <custom-ident>-start (for grid-*-start) / <custom-ident>-end (for grid-*-end),
// contributes the first such line to the grid items placement.
// Note: Named grid areas automatically generate implicitly-assigned line names of this form, so
// specifying grid-row-start: foo will choose the start edge of that named grid area (unless another
// line named foo-start was explicitly specified before it).
// Otherwise, treat this as if the integer 1 had been specified along with the <custom-ident>.
// https://drafts.csswg.org/css-grid/#grid-placement-int
// [ <integer [−∞,1]> | <integer [1,∞]> ] && <custom-ident>?
// Contributes the Nth grid line to the grid items placement. If a negative integer is given, it
// instead counts in reverse, starting from the end edge of the explicit grid.
if (column_end < 0)
column_end = static_cast<int>(occupation_grid[0].size()) + column_end + 2;
// If a name is given as a <custom-ident>, only lines with that name are counted. If not enough
// lines with that name exist, all implicit grid lines are assumed to have that name for the purpose
// of finding this position.
// An <integer> value of zero makes the declaration invalid.
// https://drafts.csswg.org/css-grid/#grid-placement-span-int
// span && [ <integer [1,∞]> || <custom-ident> ]
// Contributes a grid span to the grid items placement such that the corresponding edge of the grid
// items grid area is N lines from its opposite edge in the corresponding direction. For example,
// grid-column-end: span 2 indicates the second grid line in the endward direction from the
// grid-column-start line.
int column_span = 1;
auto row_span = child_box.computed_values().grid_row_start().is_span() ? child_box.computed_values().grid_row_start().raw_value() : 1;
if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_span())
column_span = child_box.computed_values().grid_column_end().raw_value();
if (child_box.computed_values().grid_column_end().is_position() && child_box.computed_values().grid_column_start().is_span()) {
column_span = child_box.computed_values().grid_column_start().raw_value();
column_start = column_end - column_span;
}
// If a name is given as a <custom-ident>, only lines with that name are counted. If not enough
// lines with that name exist, all implicit grid lines on the side of the explicit grid
// corresponding to the search direction are assumed to have that name for the purpose of counting
// this span.
// https://drafts.csswg.org/css-grid/#grid-placement-auto
// auto
// The property contributes nothing to the grid items placement, indicating auto-placement or a
// default span of one. (See §8 Placing Grid Items, above.)
// https://drafts.csswg.org/css-grid/#grid-placement-errors
// 8.3.1. Grid Placement Conflict Handling
// If the placement for a grid item contains two lines, and the start line is further end-ward than
// the end line, swap the two lines. If the start line is equal to the end line, remove the end
// line.
if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_position()) {
if (column_start > column_end)
swap(column_start, column_end);
if (column_start != column_end)
column_span = column_end - column_start;
}
// If the placement contains two spans, remove the one contributed by the end grid-placement
// property.
if (child_box.computed_values().grid_column_start().is_span() && child_box.computed_values().grid_column_end().is_span())
column_span = child_box.computed_values().grid_column_start().raw_value();
// FIXME: If the placement contains only a span for a named line, replace it with a span of 1.
column_start -= 1;
// 4.1.1.1. Set the column position of the cursor to the grid item's column-start line. If this is
// less than the previous column position of the cursor, increment the row position by 1.
if (column_start < auto_placement_cursor_x)
auto_placement_cursor_y++;
auto_placement_cursor_x = column_start;
maybe_add_column_to_occupation_grid(auto_placement_cursor_x + column_span, occupation_grid);
maybe_add_row_to_occupation_grid(auto_placement_cursor_y + row_span, occupation_grid);
// 4.1.1.2. Increment the cursor's row position until a value is found where the grid item does not
// overlap any occupied grid cells (creating new rows in the implicit grid as necessary).
while (true) {
if (!occupation_grid[auto_placement_cursor_y][column_start]) {
break;
}
auto_placement_cursor_y++;
maybe_add_row_to_occupation_grid(auto_placement_cursor_y + row_span, occupation_grid);
}
// 4.1.1.3. Set the item's row-start line to the cursor's row position, and set the item's row-end
// line according to its span from that position.
set_occupied_cells(auto_placement_cursor_y, auto_placement_cursor_y + row_span, column_start, column_start + column_span, occupation_grid);
positioned_boxes.append({ child_box, auto_placement_cursor_y, row_span, column_start, column_span });
}
// 4.1.2. If the item has an automatic grid position in both axes:
else {
// 4.1.2.1. Increment the column position of the auto-placement cursor until either this item's grid
// area does not overlap any occupied grid cells, or the cursor's column position, plus the item's
// column span, overflow the number of columns in the implicit grid, as determined earlier in this
// algorithm.
auto column_start = 0;
auto column_span = child_box.computed_values().grid_column_start().is_span() ? child_box.computed_values().grid_column_start().raw_value() : 1;
auto row_start = 0;
auto row_span = child_box.computed_values().grid_row_start().is_span() ? child_box.computed_values().grid_row_start().raw_value() : 1;
auto found_unoccupied_area = false;
for (int row_index = auto_placement_cursor_y; row_index < (int)occupation_grid.size(); row_index++) {
for (int column_index = auto_placement_cursor_x; column_index < (int)occupation_grid[0].size(); column_index++) {
if (column_span + column_index <= static_cast<int>(occupation_grid[0].size())) {
auto found_all_available = true;
for (int span_index = 0; span_index < column_span; span_index++) {
if (occupation_grid[row_index][column_index + span_index])
found_all_available = false;
}
if (found_all_available) {
found_unoccupied_area = true;
column_start = column_index;
row_start = row_index;
goto finish;
}
}
auto_placement_cursor_x = 0;
}
auto_placement_cursor_x = 0;
auto_placement_cursor_y++;
}
finish:
// 4.1.2.2. If a non-overlapping position was found in the previous step, set the item's row-start
// and column-start lines to the cursor's position. Otherwise, increment the auto-placement cursor's
// row position (creating new rows in the implicit grid as necessary), set its column position to the
// start-most column line in the implicit grid, and return to the previous step.
if (!found_unoccupied_area) {
row_start = (int)occupation_grid.size();
maybe_add_row_to_occupation_grid((int)occupation_grid.size() + 1, occupation_grid);
}
set_occupied_cells(row_start, row_start + row_span, column_start, column_start + column_span, occupation_grid);
positioned_boxes.append({ child_box, row_start, row_span, column_start, column_span });
}
boxes_to_place.remove(i);
i--;
// FIXME: 4.2. For dense packing:
}
auto& box_state = m_state.get_mutable(box);
for (auto& positioned_box : positioned_boxes) {
auto& child_box_state = m_state.get_mutable(positioned_box.box);
if (child_box_state.content_height() > positioned_box.computed_height)
positioned_box.computed_height = child_box_state.content_height();
if (auto independent_formatting_context = layout_inside(positioned_box.box, LayoutMode::Normal, available_space))
independent_formatting_context->parent_context_did_dimension_child_root_box();
if (child_box_state.content_height() > positioned_box.computed_height)
positioned_box.computed_height = child_box_state.content_height();
}
// https://drafts.csswg.org/css-grid/#overview-sizing
// 2.3. Sizing the Grid
// Once the grid items have been placed, the sizes of the grid tracks (rows and columns) are
// calculated, accounting for the sizes of their contents and/or available space as specified in
// the grid definition.
// https://drafts.csswg.org/css-grid/#layout-algorithm
// 12. Grid Sizing
// This section defines the grid sizing algorithm, which determines the size of all grid tracks and,
// by extension, the entire grid.
// Each track has specified minimum and maximum sizing functions (which may be the same). Each
// sizing function is either:
// - A fixed sizing function (<length> or resolvable <percentage>).
// - An intrinsic sizing function (min-content, max-content, auto, fit-content()).
// - A flexible sizing function (<flex>).
// The grid sizing algorithm defines how to resolve these sizing constraints into used track sizes.
struct GridTrack {
CSS::GridTrackSize min_track_sizing_function;
CSS::GridTrackSize max_track_sizing_function;
float base_size { 0 };
float growth_limit { 0 };
};
Vector<GridTrack> grid_rows;
Vector<GridTrack> grid_columns;
for (auto& column_size : box.computed_values().grid_template_columns())
grid_columns.append({ column_size, column_size });
for (auto& row_size : box.computed_values().grid_template_rows())
grid_rows.append({ row_size, row_size });
for (int column_index = grid_columns.size(); column_index < static_cast<int>(occupation_grid[0].size()); column_index++)
grid_columns.append({ CSS::GridTrackSize::make_auto(), CSS::GridTrackSize::make_auto() });
for (int row_index = grid_rows.size(); row_index < static_cast<int>(occupation_grid.size()); row_index++)
grid_rows.append({ CSS::GridTrackSize::make_auto(), CSS::GridTrackSize::make_auto() });
// https://drafts.csswg.org/css-grid/#algo-overview
// 12.1. Grid Sizing Algorithm
// FIXME: Deals with subgrids, min-content, and justify-content.. not implemented yet
// https://drafts.csswg.org/css-grid/#algo-track-sizing
// 12.3. Track Sizing Algorithm
// The remainder of this section is the track sizing algorithm, which calculates from the min and
// max track sizing functions the used track size. Each track has a base size, a <length> which
// grows throughout the algorithm and which will eventually be the tracks final size, and a growth
// limit, a <length> which provides a desired maximum size for the base size. There are 5 steps:
// 1. Initialize Track Sizes
// 2. Resolve Intrinsic Track Sizes
// 3. Maximize Tracks
// 4. Expand Flexible Tracks
// 5. [[#algo-stretch|Expand Stretched auto Tracks]]
// https://drafts.csswg.org/css-grid/#algo-init
// 12.4. Initialize Track Sizes
// Initialize each tracks base size and growth limit.
for (auto& grid_column : grid_columns) {
// For each track, if the tracks min track sizing function is:
switch (grid_column.min_track_sizing_function.type()) {
// - A fixed sizing function
// Resolve to an absolute length and use that size as the tracks initial base size.
// Indefinite lengths cannot occur, as theyre treated as auto.
case CSS::GridTrackSize::Type::Length:
if (!grid_column.min_track_sizing_function.length().is_auto())
grid_column.base_size = grid_column.min_track_sizing_function.length().to_px(box);
break;
case CSS::GridTrackSize::Type::Percentage:
grid_column.base_size = grid_column.min_track_sizing_function.percentage().as_fraction() * box_state.content_width();
break;
// - An intrinsic sizing function
// Use an initial base size of zero.
case CSS::GridTrackSize::Type::FlexibleLength:
break;
default:
VERIFY_NOT_REACHED();
}
// For each track, if the tracks max track sizing function is:
switch (grid_column.max_track_sizing_function.type()) {
// - A fixed sizing function
// Resolve to an absolute length and use that size as the tracks initial growth limit.
case CSS::GridTrackSize::Type::Length:
if (!grid_column.max_track_sizing_function.length().is_auto())
grid_column.growth_limit = grid_column.max_track_sizing_function.length().to_px(box);
else
// - An intrinsic sizing function
// Use an initial growth limit of infinity.
grid_column.growth_limit = -1;
break;
case CSS::GridTrackSize::Type::Percentage:
grid_column.growth_limit = grid_column.max_track_sizing_function.percentage().as_fraction() * box_state.content_width();
break;
// - A flexible sizing function
// Use an initial growth limit of infinity.
case CSS::GridTrackSize::Type::FlexibleLength:
grid_column.growth_limit = -1;
break;
default:
VERIFY_NOT_REACHED();
}
}
// Initialize each tracks base size and growth limit.
for (auto& grid_row : grid_rows) {
// For each track, if the tracks min track sizing function is:
switch (grid_row.min_track_sizing_function.type()) {
// - A fixed sizing function
// Resolve to an absolute length and use that size as the tracks initial base size.
// Indefinite lengths cannot occur, as theyre treated as auto.
case CSS::GridTrackSize::Type::Length:
if (!grid_row.min_track_sizing_function.length().is_auto())
grid_row.base_size = grid_row.min_track_sizing_function.length().to_px(box);
break;
case CSS::GridTrackSize::Type::Percentage:
grid_row.base_size = grid_row.min_track_sizing_function.percentage().as_fraction() * box_state.content_height();
break;
// - An intrinsic sizing function
// Use an initial base size of zero.
case CSS::GridTrackSize::Type::FlexibleLength:
break;
default:
VERIFY_NOT_REACHED();
}
// For each track, if the tracks max track sizing function is:
switch (grid_row.max_track_sizing_function.type()) {
// - A fixed sizing function
// Resolve to an absolute length and use that size as the tracks initial growth limit.
case CSS::GridTrackSize::Type::Length:
if (!grid_row.max_track_sizing_function.length().is_auto())
grid_row.growth_limit = grid_row.max_track_sizing_function.length().to_px(box);
else
// - An intrinsic sizing function
// Use an initial growth limit of infinity.
grid_row.growth_limit = -1;
break;
case CSS::GridTrackSize::Type::Percentage:
grid_row.growth_limit = grid_row.max_track_sizing_function.percentage().as_fraction() * box_state.content_height();
break;
// - A flexible sizing function
// Use an initial growth limit of infinity.
case CSS::GridTrackSize::Type::FlexibleLength:
grid_row.growth_limit = -1;
break;
default:
VERIFY_NOT_REACHED();
}
}
// FIXME: In all cases, if the growth limit is less than the base size, increase the growth limit to match
// the base size.
// https://drafts.csswg.org/css-grid/#algo-content
// 12.5. Resolve Intrinsic Track Sizes
// This step resolves intrinsic track sizing functions to absolute lengths. First it resolves those
// sizes based on items that are contained wholly within a single track. Then it gradually adds in
// the space requirements of items that span multiple tracks, evenly distributing the extra space
// across those tracks insofar as possible.
// FIXME: 1. Shim baseline-aligned items so their intrinsic size contributions reflect their baseline
// alignment. For the items in each baseline-sharing group, add a “shim” (effectively, additional
// margin) on the start/end side (for first/last-baseline alignment) of each item so that, when
// start/end-aligned together their baselines align as specified.
// Consider these “shims” as part of the items intrinsic size contribution for the purpose of track
// sizing, below. If an item uses multiple intrinsic size contributions, it can have different shims
// for each one.
// 2. Size tracks to fit non-spanning items: For each track with an intrinsic track sizing function and
// not a flexible sizing function, consider the items in it with a span of 1:
int index = 0;
for (auto& grid_column : grid_columns) {
if (!grid_column.min_track_sizing_function.is_intrinsic_track_sizing()) {
++index;
continue;
}
Vector<Box const&> boxes_of_column;
for (auto& positioned_box : positioned_boxes) {
if (positioned_box.column == index && positioned_box.column_span == 1)
boxes_of_column.append(positioned_box.box);
}
// - For min-content minimums:
// If the track has a min-content min track sizing function, set its base size to the maximum of the
// items min-content contributions, floored at zero.
// FIXME: Not implemented yet min-content.
// - For max-content minimums:
// If the track has a max-content min track sizing function, set its base size to the maximum of the
// items max-content contributions, floored at zero.
// FIXME: Not implemented yet max-content.
// - For auto minimums:
// If the track has an auto min track sizing function and the grid container is being sized under a
// min-/max-content constraint, set the tracks base size to the maximum of its items limited
// min-/max-content contributions (respectively), floored at zero. The limited min-/max-content
// contribution of an item is (for this purpose) its min-/max-content contribution (accordingly),
// limited by the max track sizing function (which could be the argument to a fit-content() track
// sizing function) if that is fixed and ultimately floored by its minimum contribution (defined
// below).
// FIXME: Not implemented yet min-/max-content.
// Otherwise, set the tracks base size to the maximum of its items minimum contributions, floored
// at zero. The minimum contribution of an item is the smallest outer size it can have.
// Specifically, if the items computed preferred size behaves as auto or depends on the size of its
// containing block in the relevant axis, its minimum contribution is the outer size that would
// result from assuming the items used minimum size as its preferred size; else the items minimum
// contribution is its min-content contribution. Because the minimum contribution often depends on
// the size of the items content, it is considered a type of intrinsic size contribution.
// For items with a specified minimum size of auto (the initial value), the minimum contribution is
// usually equivalent to the min-content contribution—but can differ in some cases, see §6.6
// Automatic Minimum Size of Grid Items. Also, minimum contribution ≤ min-content contribution ≤
// max-content contribution.
float grid_column_width = 0;
for (auto& box_of_column : boxes_of_column)
grid_column_width = max(grid_column_width, calculate_min_content_width(box_of_column));
grid_column.base_size = grid_column_width;
// - For min-content maximums:
// If the track has a min-content max track sizing function, set its growth limit to the maximum of
// the items min-content contributions.
// FIXME: Not implemented yet min-content maximums.
// - For max-content maximums:
// If the track has a max-content max track sizing function, set its growth limit to the maximum of
// the items max-content contributions. For fit-content() maximums, furthermore clamp this growth
// limit by the fit-content() argument.
// FIXME: Not implemented yet max-content maximums.
// In all cases, if a tracks growth limit is now less than its base size, increase the growth limit
// to match the base size.
if (grid_column.growth_limit != -1 && grid_column.growth_limit < grid_column.base_size)
grid_column.growth_limit = grid_column.base_size;
++index;
}
index = 0;
for (auto& grid_row : grid_rows) {
if (!grid_row.min_track_sizing_function.is_intrinsic_track_sizing()) {
++index;
continue;
}
Vector<PositionedBox&> positioned_boxes_of_row;
for (auto& positioned_box : positioned_boxes) {
if (positioned_box.row == index && positioned_box.row_span == 1)
positioned_boxes_of_row.append(positioned_box);
}
// - For min-content minimums:
// If the track has a min-content min track sizing function, set its base size to the maximum of the
// items min-content contributions, floored at zero.
// FIXME: Not implemented yet min-content.
// - For max-content minimums:
// If the track has a max-content min track sizing function, set its base size to the maximum of the
// items max-content contributions, floored at zero.
// FIXME: Not implemented yet max-content.
// - For auto minimums:
// If the track has an auto min track sizing function and the grid container is being sized under a
// min-/max-content constraint, set the tracks base size to the maximum of its items limited
// min-/max-content contributions (respectively), floored at zero. The limited min-/max-content
// contribution of an item is (for this purpose) its min-/max-content contribution (accordingly),
// limited by the max track sizing function (which could be the argument to a fit-content() track
// sizing function) if that is fixed and ultimately floored by its minimum contribution (defined
// below).
// FIXME: Not implemented yet min-/max-content.
// Otherwise, set the tracks base size to the maximum of its items minimum contributions, floored
// at zero. The minimum contribution of an item is the smallest outer size it can have.
// Specifically, if the items computed preferred size behaves as auto or depends on the size of its
// containing block in the relevant axis, its minimum contribution is the outer size that would
// result from assuming the items used minimum size as its preferred size; else the items minimum
// contribution is its min-content contribution. Because the minimum contribution often depends on
// the size of the items content, it is considered a type of intrinsic size contribution.
// For items with a specified minimum size of auto (the initial value), the minimum contribution is
// usually equivalent to the min-content contribution—but can differ in some cases, see §6.6
// Automatic Minimum Size of Grid Items. Also, minimum contribution ≤ min-content contribution ≤
// max-content contribution.
float grid_row_height = 0;
for (auto& positioned_box : positioned_boxes_of_row)
grid_row_height = max(grid_row_height, positioned_box.computed_height);
grid_row.base_size = grid_row_height;
// - For min-content maximums:
// If the track has a min-content max track sizing function, set its growth limit to the maximum of
// the items min-content contributions.
// FIXME: Not implemented yet min-content maximums.
// - For max-content maximums:
// If the track has a max-content max track sizing function, set its growth limit to the maximum of
// the items max-content contributions. For fit-content() maximums, furthermore clamp this growth
// limit by the fit-content() argument.
// FIXME: Not implemented yet max-content maximums.
// In all cases, if a tracks growth limit is now less than its base size, increase the growth limit
// to match the base size.
if (grid_row.growth_limit != -1 && grid_row.growth_limit < grid_row.base_size)
grid_row.growth_limit = grid_row.base_size;
++index;
}
// 3. Increase sizes to accommodate spanning items crossing content-sized tracks: Next, consider the
// items with a span of 2 that do not span a track with a flexible sizing function.
// FIXME: Content-sized tracks not implemented (min-content, etc.)
// 3.1. For intrinsic minimums: First distribute extra space to base sizes of tracks with an intrinsic
// min track sizing function, to accommodate these items minimum contributions.
// If the grid container is being sized under a min- or max-content constraint, use the items
// limited min-content contributions in place of their minimum contributions here. (For an item
// spanning multiple tracks, the upper limit used to calculate its limited min-/max-content
// contribution is the sum of the fixed max track sizing functions of any tracks it spans, and is
// applied if it only spans such tracks.)
// 3.2. For content-based minimums: Next continue to distribute extra space to the base sizes of tracks
// with a min track sizing function of min-content or max-content, to accommodate these items'
// min-content contributions.
// 3.3. For max-content minimums: Next, if the grid container is being sized under a max-content
// constraint, continue to distribute extra space to the base sizes of tracks with a min track
// sizing function of auto or max-content, to accommodate these items' limited max-content
// contributions.
// In all cases, continue to distribute extra space to the base sizes of tracks with a min track
// sizing function of max-content, to accommodate these items' max-content contributions.
// 3.4. If at this point any tracks growth limit is now less than its base size, increase its growth
// limit to match its base size.
// 3.5. For intrinsic maximums: Next distribute extra space to the growth limits of tracks with intrinsic
// max track sizing function, to accommodate these items' min-content contributions. Mark any tracks
// whose growth limit changed from infinite to finite in this step as infinitely growable for the
// next step.
// 3.6. For max-content maximums: Lastly continue to distribute extra space to the growth limits of
// tracks with a max track sizing function of max-content, to accommodate these items' max-content
// contributions. However, limit the growth of any fit-content() tracks by their fit-content()
// argument.
// Repeat incrementally for items with greater spans until all items have been considered.
// FIXME: 4. Increase sizes to accommodate spanning items crossing flexible tracks: Next, repeat the previous
// step instead considering (together, rather than grouped by span size) all items that do span a
// track with a flexible sizing function while distributing space only to flexible tracks (i.e.
// treating all other tracks as having a fixed sizing function)
// if the sum of the flexible sizing functions of all flexible tracks spanned by the item is greater
// than or equal to one, distributing space to such tracks according to the ratios of their flexible
// sizing functions rather than distributing space equally; and if the sum is less than one,
// distributing that proportion of space according to the ratios of their flexible sizing functions
// and the rest equally
// FIXME: 5. If any track still has an infinite growth limit (because, for example, it had no items placed in
// it or it is a flexible track), set its growth limit to its base size.
// https://drafts.csswg.org/css-grid/#extra-space
// 12.5.1. Distributing Extra Space Across Spanned Tracks
// 1. Maintain separately for each affected track a planned increase, initially set to 0. (This
// prevents the size increases from becoming order-dependent.)
// 2. For each accommodated item, considering only tracks the item spans:
// 2.1. Find the space to distribute: Subtract the affected size of every spanned track (not just the
// affected tracks) from the items size contribution, flooring it at zero. (For infinite growth
// limits, substitute the tracks base size.) This remaining size contribution is the space to
// distribute.
// space = max(0, size contribution - ∑track-sizes)
// 2.2. Distribute space up to limits:
// Find the item-incurred increase for each affected track by: distributing the space equally among
// these tracks, freezing a tracks item-incurred increase as its affected size + item-incurred
// increase reaches its limit (and continuing to grow the unfrozen tracks as needed).
// For base sizes, the limit is its growth limit. For growth limits, the limit is infinity if it is
// marked as infinitely growable, and equal to the growth limit otherwise.
// If the affected size was a growth limit and the track is not marked infinitely growable, then each
// item-incurred increase will be zero.
// 2.3. Distribute space beyond limits:
// If extra space remains at this point, unfreeze and continue to distribute space to the
// item-incurred increase of…
// - when accommodating minimum contributions or accommodating min-content contributions: any affected
// track that happens to also have an intrinsic max track sizing function; if there are no such
// tracks, then all affected tracks.
// - when accommodating max-content contributions: any affected track that happens to also have a
// max-content max track sizing function; if there are no such tracks, then all affected tracks.
// - when handling any intrinsic growth limit: all affected tracks.
// For this purpose, the max track sizing function of a fit-content() track is treated as
// max-content until it reaches the limit specified as the fit-content() argument, after which it is
// treated as having a fixed sizing function of that argument.
// This step prioritizes the distribution of space for accommodating size contributions beyond the
// tracks' current growth limits based on the types of their max track sizing functions.
// 2.4. For each affected track, if the tracks item-incurred increase is larger than the tracks planned
// increase set the tracks planned increase to that value.
// 3. Update the tracks' affected sizes by adding in the planned increase, so that the next round of
// space distribution will account for the increase. (If the affected size is an infinite growth
// limit, set it to the tracks base size plus the planned increase.)
// https://drafts.csswg.org/css-grid/#algo-grow-tracks
// 12.6. Maximize Tracks
// If the free space is positive, distribute it equally to the base sizes of all tracks, freezing
// tracks as they reach their growth limits (and continuing to grow the unfrozen tracks as needed).
// For the purpose of this step: if sizing the grid container under a max-content constraint, the
// free space is infinite; if sizing under a min-content constraint, the free space is zero.
// If this would cause the grid to be larger than the grid containers inner size as limited by its
// max-width/height, then redo this step, treating the available grid space as equal to the grid
// containers inner size when its sized to its max-width/height.
// FIXME: Do later as at the moment all growth limits are equal to base sizes.
// https://drafts.csswg.org/css-grid/#algo-flex-tracks
// 12.7. Expand Flexible Tracks
// This step sizes flexible tracks using the largest value it can assign to an fr without exceeding
// the available space.
// First, find the grids used flex fraction:
auto column_flex_factor_sum = 0;
for (auto& grid_column : grid_columns) {
if (grid_column.min_track_sizing_function.is_flexible_length())
column_flex_factor_sum++;
}
// See 12.7.1.
// Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value is less
// than 1, set it to 1 instead.
if (column_flex_factor_sum < 1)
column_flex_factor_sum = 1;
// See 12.7.1.
float sized_column_widths = 0;
for (auto& grid_column : grid_columns) {
if (!grid_column.min_track_sizing_function.is_flexible_length())
sized_column_widths += grid_column.base_size;
}
// Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks.
double free_horizontal_space = box_state.content_width() - sized_column_widths;
// If the free space is zero or if sizing the grid container under a min-content constraint:
// The used flex fraction is zero.
// FIXME: Add min-content constraint check.
// Otherwise, if the free space is a definite length:
// The used flex fraction is the result of finding the size of an fr using all of the grid tracks
// and a space to fill of the available grid space.
if (free_horizontal_space > 0) {
for (auto& grid_column : grid_columns) {
if (grid_column.min_track_sizing_function.is_flexible_length()) {
// See 12.7.1.
// Let the hypothetical fr size be the leftover space divided by the flex factor sum.
auto hypothetical_fr_size = static_cast<double>(1.0 / column_flex_factor_sum) * free_horizontal_space;
// For each flexible track, if the product of the used flex fraction and the tracks flex factor is
// greater than the tracks base size, set its base size to that product.
grid_column.base_size = max(grid_column.base_size, hypothetical_fr_size);
}
}
}
// First, find the grids used flex fraction:
auto row_flex_factor_sum = 0;
for (auto& grid_row : grid_rows) {
if (grid_row.min_track_sizing_function.is_flexible_length())
row_flex_factor_sum++;
}
// See 12.7.1.
// Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value is less
// than 1, set it to 1 instead.
if (row_flex_factor_sum < 1)
row_flex_factor_sum = 1;
// See 12.7.1.
float sized_row_heights = 0;
for (auto& grid_row : grid_rows) {
if (!grid_row.min_track_sizing_function.is_flexible_length())
sized_row_heights += grid_row.base_size;
}
// Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks.
double free_vertical_space = box_state.content_height() - sized_row_heights;
// If the free space is zero or if sizing the grid container under a min-content constraint:
// The used flex fraction is zero.
// FIXME: Add min-content constraint check.
// Otherwise, if the free space is a definite length:
// The used flex fraction is the result of finding the size of an fr using all of the grid tracks
// and a space to fill of the available grid space.
if (free_vertical_space > 0) {
for (auto& grid_row : grid_rows) {
if (grid_row.min_track_sizing_function.is_flexible_length()) {
// See 12.7.1.
// Let the hypothetical fr size be the leftover space divided by the flex factor sum.
auto hypothetical_fr_size = static_cast<double>(1.0 / row_flex_factor_sum) * free_vertical_space;
// For each flexible track, if the product of the used flex fraction and the tracks flex factor is
// greater than the tracks base size, set its base size to that product.
grid_row.base_size = max(grid_row.base_size, hypothetical_fr_size);
}
}
}
// Otherwise, if the free space is an indefinite length:
// FIXME: No tracks will have indefinite length as per current implementation.
// The used flex fraction is the maximum of:
// For each flexible track, if the flexible tracks flex factor is greater than one, the result of
// dividing the tracks base size by its flex factor; otherwise, the tracks base size.
// For each grid item that crosses a flexible track, the result of finding the size of an fr using
// all the grid tracks that the item crosses and a space to fill of the items max-content
// contribution.
// If using this flex fraction would cause the grid to be smaller than the grid containers
// min-width/height (or larger than the grid containers max-width/height), then redo this step,
// treating the free space as definite and the available grid space as equal to the grid containers
// inner size when its sized to its min-width/height (max-width/height).
// For each flexible track, if the product of the used flex fraction and the tracks flex factor is
// greater than the tracks base size, set its base size to that product.
// https://drafts.csswg.org/css-grid/#algo-find-fr-size
// 12.7.1. Find the Size of an fr
// This algorithm finds the largest size that an fr unit can be without exceeding the target size.
// It must be called with a set of grid tracks and some quantity of space to fill.
// 1. Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks.
// 2. Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value is less
// than 1, set it to 1 instead.
// 3. Let the hypothetical fr size be the leftover space divided by the flex factor sum.
// FIXME: 4. If the product of the hypothetical fr size and a flexible tracks flex factor is less than the
// tracks base size, restart this algorithm treating all such tracks as inflexible.
// 5. Return the hypothetical fr size.
// https://drafts.csswg.org/css-grid/#algo-stretch
// 12.8. Stretch auto Tracks
// When the content-distribution property of the grid container is normal or stretch in this axis,
// this step expands tracks that have an auto max track sizing function by dividing any remaining
// positive, definite free space equally amongst them. If the free space is indefinite, but the grid
// container has a definite min-width/height, use that size to calculate the free space for this
// step instead.
float used_horizontal_space = 0;
for (auto& grid_column : grid_columns) {
if (!(grid_column.max_track_sizing_function.is_length() && grid_column.max_track_sizing_function.length().is_auto()))
used_horizontal_space += grid_column.base_size;
}
float remaining_horizontal_space = box_state.content_width() - used_horizontal_space;
auto count_of_auto_max_column_tracks = 0;
for (auto& grid_column : grid_columns) {
if (grid_column.max_track_sizing_function.is_length() && grid_column.max_track_sizing_function.length().is_auto())
count_of_auto_max_column_tracks++;
}
for (auto& grid_column : grid_columns) {
if (grid_column.max_track_sizing_function.is_length() && grid_column.max_track_sizing_function.length().is_auto())
grid_column.base_size = max(grid_column.base_size, remaining_horizontal_space / count_of_auto_max_column_tracks);
}
float used_vertical_space = 0;
for (auto& grid_row : grid_rows) {
if (!(grid_row.max_track_sizing_function.is_length() && grid_row.max_track_sizing_function.length().is_auto()))
used_vertical_space += grid_row.base_size;
}
float remaining_vertical_space = box_state.content_height() - used_vertical_space;
auto count_of_auto_max_row_tracks = 0;
for (auto& grid_row : grid_rows) {
if (grid_row.max_track_sizing_function.is_length() && grid_row.max_track_sizing_function.length().is_auto())
count_of_auto_max_row_tracks++;
}
for (auto& grid_row : grid_rows) {
if (grid_row.max_track_sizing_function.is_length() && grid_row.max_track_sizing_function.length().is_auto())
grid_row.base_size = max(grid_row.base_size, remaining_vertical_space / count_of_auto_max_row_tracks);
}
// Do layout
auto layout_box = [&](int row_start, int row_end, int column_start, int column_end, Box const& child_box) -> void {
auto& child_box_state = m_state.get_mutable(child_box);
float x_start = 0;
float x_end = 0;
float y_start = 0;
float y_end = 0;
for (int i = 0; i < column_start; i++)
x_start += grid_columns[i].base_size;
for (int i = 0; i < column_end; i++)
x_end += grid_columns[i].base_size;
for (int i = 0; i < row_start; i++)
y_start += grid_rows[i].base_size;
for (int i = 0; i < row_end; i++)
y_end += grid_rows[i].base_size;
child_box_state.set_content_width(x_end - x_start);
child_box_state.set_content_height(y_end - y_start);
child_box_state.offset = { x_start, y_start };
};
for (auto& positioned_box : positioned_boxes)
layout_box(positioned_box.row, positioned_box.row + positioned_box.row_span, positioned_box.column, positioned_box.column + positioned_box.column_span, positioned_box.box);
float total_y = 0;
for (auto& grid_row : grid_rows)
total_y += grid_row.base_size;
m_automatic_content_height = total_y;
}
float GridFormattingContext::automatic_content_height() const
{
return m_automatic_content_height;
}
bool GridFormattingContext::is_auto_positioned_row(CSS::GridTrackPlacement const& grid_row_start, CSS::GridTrackPlacement const& grid_row_end) const
{
return is_auto_positioned_track(grid_row_start, grid_row_end);
}
bool GridFormattingContext::is_auto_positioned_column(CSS::GridTrackPlacement const& grid_column_start, CSS::GridTrackPlacement const& grid_column_end) const
{
return is_auto_positioned_track(grid_column_start, grid_column_end);
}
bool GridFormattingContext::is_auto_positioned_track(CSS::GridTrackPlacement const& grid_track_start, CSS::GridTrackPlacement const& grid_track_end) const
{
return grid_track_start.is_auto_positioned() && grid_track_end.is_auto_positioned();
}
}