ladybird/Kernel/Process.cpp
2018-12-03 00:39:25 +01:00

1766 lines
51 KiB
C++

#include "types.h"
#include "Process.h"
#include "kmalloc.h"
#include "StdLib.h"
#include "i386.h"
#include "system.h"
#include <VirtualFileSystem/FileDescriptor.h>
#include <VirtualFileSystem/VirtualFileSystem.h>
#include "ELFLoader.h"
#include "MemoryManager.h"
#include "errno.h"
#include "i8253.h"
#include "RTC.h"
#include "ProcFileSystem.h"
#include <AK/StdLib.h>
#include <LibC/signal_numbers.h>
#include "Syscall.h"
#include "Scheduler.h"
#include "FIFO.h"
//#define DEBUG_IO
//#define TASK_DEBUG
//#define FORK_DEBUG
#define SIGNAL_DEBUG
#define MAX_PROCESS_GIDS 32
static const dword defaultStackSize = 16384;
static pid_t next_pid;
InlineLinkedList<Process>* g_processes;
static String* s_hostname;
static String& hostnameStorage(InterruptDisabler&)
{
ASSERT(s_hostname);
return *s_hostname;
}
static String getHostname()
{
InterruptDisabler disabler;
return hostnameStorage(disabler).isolatedCopy();
}
CoolGlobals* g_cool_globals;
void Process::initialize()
{
#ifdef COOL_GLOBALS
g_cool_globals = reinterpret_cast<CoolGlobals*>(0x1000);
#endif
next_pid = 0;
g_processes = new InlineLinkedList<Process>;
s_hostname = new String("courage");
Scheduler::initialize();
}
Vector<Process*> Process::allProcesses()
{
InterruptDisabler disabler;
Vector<Process*> processes;
processes.ensureCapacity(g_processes->sizeSlow());
for (auto* process = g_processes->head(); process; process = process->next())
processes.append(process);
return processes;
}
Region* Process::allocate_region(LinearAddress laddr, size_t size, String&& name, bool is_readable, bool is_writable, bool commit)
{
// FIXME: This needs sanity checks. What if this overlaps existing regions?
if (laddr.is_null()) {
laddr = m_nextRegion;
m_nextRegion = m_nextRegion.offset(size).offset(PAGE_SIZE);
}
laddr.mask(0xfffff000);
m_regions.append(adopt(*new Region(laddr, size, move(name), is_readable, is_writable)));
if (commit)
m_regions.last()->commit(*this);
MM.mapRegion(*this, *m_regions.last());
return m_regions.last().ptr();
}
Region* Process::allocate_file_backed_region(LinearAddress laddr, size_t size, RetainPtr<Vnode>&& vnode, String&& name, bool is_readable, bool is_writable)
{
ASSERT(!vnode->isCharacterDevice());
// FIXME: This needs sanity checks. What if this overlaps existing regions?
if (laddr.is_null()) {
laddr = m_nextRegion;
m_nextRegion = m_nextRegion.offset(size).offset(PAGE_SIZE);
}
laddr.mask(0xfffff000);
m_regions.append(adopt(*new Region(laddr, size, move(vnode), move(name), is_readable, is_writable)));
MM.mapRegion(*this, *m_regions.last());
return m_regions.last().ptr();
}
Region* Process::allocate_region_with_vmo(LinearAddress laddr, size_t size, RetainPtr<VMObject>&& vmo, size_t offset_in_vmo, String&& name, bool is_readable, bool is_writable)
{
ASSERT(vmo);
// FIXME: This needs sanity checks. What if this overlaps existing regions?
if (laddr.is_null()) {
laddr = m_nextRegion;
m_nextRegion = m_nextRegion.offset(size).offset(PAGE_SIZE);
}
laddr.mask(0xfffff000);
offset_in_vmo &= PAGE_MASK;
size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
m_regions.append(adopt(*new Region(laddr, size, move(vmo), offset_in_vmo, move(name), is_readable, is_writable)));
MM.mapRegion(*this, *m_regions.last());
return m_regions.last().ptr();
}
bool Process::deallocate_region(Region& region)
{
InterruptDisabler disabler;
for (size_t i = 0; i < m_regions.size(); ++i) {
if (m_regions[i].ptr() == &region) {
MM.unmapRegion(*this, region);
m_regions.remove(i);
return true;
}
}
return false;
}
Region* Process::regionFromRange(LinearAddress laddr, size_t size)
{
for (auto& region : m_regions) {
if (region->linearAddress == laddr && region->size == size)
return region.ptr();
}
return nullptr;
}
int Process::sys$set_mmap_name(void* addr, size_t size, const char* name)
{
if (!validate_read_str(name))
return -EFAULT;
auto* region = regionFromRange(LinearAddress((dword)addr), size);
if (!region)
return -EINVAL;
region->name = name;
return 0;
}
void* Process::sys$mmap(const Syscall::SC_mmap_params* params)
{
if (!validate_read(params, sizeof(Syscall::SC_mmap_params)))
return (void*)-EFAULT;
void* addr = (void*)params->addr;
size_t size = params->size;
int prot = params->prot;
int flags = params->flags;
int fd = params->fd;
Unix::off_t offset = params->offset;
if (size == 0)
return (void*)-EINVAL;
if ((dword)addr & ~PAGE_MASK || size & ~PAGE_MASK)
return (void*)-EINVAL;
if (flags & MAP_ANONYMOUS) {
InterruptDisabler disabler;
// FIXME: Implement mapping at a client-specified address. Most of the support is already in plcae.
ASSERT(addr == nullptr);
auto* region = allocate_region(LinearAddress(), size, "mmap", prot & PROT_READ, prot & PROT_WRITE, false);
if (!region)
return (void*)-ENOMEM;
return region->linearAddress.asPtr();
}
if (offset & ~PAGE_MASK)
return (void*)-EINVAL;
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return (void*)-EBADF;
if (descriptor->vnode()->isCharacterDevice())
return (void*)-ENODEV;
// FIXME: If PROT_EXEC, check that the underlying file system isn't mounted noexec.
auto region_name = descriptor->absolute_path();
InterruptDisabler disabler;
// FIXME: Implement mapping at a client-specified address. Most of the support is already in plcae.
ASSERT(addr == nullptr);
auto* region = allocate_file_backed_region(LinearAddress(), size, descriptor->vnode(), move(region_name), prot & PROT_READ, prot & PROT_WRITE);
if (!region)
return (void*)-ENOMEM;
return region->linearAddress.asPtr();
}
int Process::sys$munmap(void* addr, size_t size)
{
InterruptDisabler disabler;
auto* region = regionFromRange(LinearAddress((dword)addr), size);
if (!region)
return -1;
if (!deallocate_region(*region))
return -1;
return 0;
}
int Process::sys$gethostname(char* buffer, size_t size)
{
if (!validate_write(buffer, size))
return -EFAULT;
auto hostname = getHostname();
if (size < (hostname.length() + 1))
return -ENAMETOOLONG;
memcpy(buffer, hostname.characters(), size);
return 0;
}
Process* Process::fork(RegisterDump& regs)
{
auto* child = new Process(String(m_name), m_uid, m_gid, m_pid, m_ring, m_cwd.copyRef(), m_executable.copyRef(), m_tty, this);
if (!child)
return nullptr;
memcpy(child->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
child->m_signal_mask = m_signal_mask;
#ifdef FORK_DEBUG
dbgprintf("fork: child=%p\n", child);
#endif
#if 0
// FIXME: An honest fork() would copy these. Needs a Vector copy ctor.
child->m_arguments = m_arguments;
child->m_initialEnvironment = m_initialEnvironment;
#endif
for (auto& region : m_regions) {
#ifdef FORK_DEBUG
dbgprintf("fork: cloning Region{%p}\n", region.ptr());
#endif
auto cloned_region = region->clone();
child->m_regions.append(move(cloned_region));
MM.mapRegion(*child, *child->m_regions.last());
}
child->m_tss.eax = 0; // fork() returns 0 in the child :^)
child->m_tss.ebx = regs.ebx;
child->m_tss.ecx = regs.ecx;
child->m_tss.edx = regs.edx;
child->m_tss.ebp = regs.ebp;
child->m_tss.esp = regs.esp_if_crossRing;
child->m_tss.esi = regs.esi;
child->m_tss.edi = regs.edi;
child->m_tss.eflags = regs.eflags;
child->m_tss.eip = regs.eip;
child->m_tss.cs = regs.cs;
child->m_tss.ds = regs.ds;
child->m_tss.es = regs.es;
child->m_tss.fs = regs.fs;
child->m_tss.gs = regs.gs;
child->m_tss.ss = regs.ss_if_crossRing;
#ifdef FORK_DEBUG
dbgprintf("fork: child will begin executing at %w:%x with stack %w:%x\n", child->m_tss.cs, child->m_tss.eip, child->m_tss.ss, child->m_tss.esp);
#endif
ProcFS::the().add_process(*child);
{
InterruptDisabler disabler;
g_processes->prepend(child);
system.nprocess++;
}
#ifdef TASK_DEBUG
kprintf("Process %u (%s) forked from %u @ %p\n", child->pid(), child->name().characters(), m_pid, child->m_tss.eip);
#endif
return child;
}
pid_t Process::sys$fork(RegisterDump& regs)
{
auto* child = fork(regs);
ASSERT(child);
return child->pid();
}
int Process::do_exec(const String& path, Vector<String>&& arguments, Vector<String>&& environment)
{
auto parts = path.split('/');
if (parts.isEmpty())
return -ENOENT;
int error;
auto descriptor = VFS::the().open(path, error, 0, m_cwd ? m_cwd->inode : InodeIdentifier());
if (!descriptor) {
ASSERT(error != 0);
return error;
}
if (!descriptor->metadata().mayExecute(m_euid, m_gids))
return -EACCES;
if (!descriptor->metadata().size) {
kprintf("exec() of 0-length binaries not supported\n");
return -ENOTIMPL;
}
auto vmo = VMObject::create_file_backed(descriptor->vnode(), descriptor->metadata().size);
vmo->set_name(descriptor->absolute_path());
auto* region = allocate_region_with_vmo(LinearAddress(), descriptor->metadata().size, vmo.copyRef(), 0, "helper", true, false);
dword entry_eip = 0;
PageDirectory* old_page_directory = m_page_directory;
PageDirectory* new_page_directory = reinterpret_cast<PageDirectory*>(kmalloc_page_aligned(sizeof(PageDirectory)));
#ifdef MM_DEBUG
dbgprintf("Process %u exec: PD=%x created\n", pid(), new_page_directory);
#endif
MM.populate_page_directory(*new_page_directory);
m_page_directory = new_page_directory;
ProcessPagingScope paging_scope(*this);
// FIXME: Should we consider doing on-demand paging here? Is it actually useful?
bool success = region->page_in(*new_page_directory);
ASSERT(success);
{
InterruptDisabler disabler;
// Okay, here comes the sleight of hand, pay close attention..
auto old_regions = move(m_regions);
ELFLoader loader(region->linearAddress.asPtr());
loader.map_section_hook = [&] (LinearAddress laddr, size_t size, size_t alignment, size_t offset_in_image, bool is_readable, bool is_writable, const String& name) {
ASSERT(size);
ASSERT(alignment == PAGE_SIZE);
size = ((size / 4096) + 1) * 4096; // FIXME: Use ceil_div?
(void) allocate_region_with_vmo(laddr, size, vmo.copyRef(), offset_in_image, String(name), is_readable, is_writable);
return laddr.asPtr();
};
loader.alloc_section_hook = [&] (LinearAddress laddr, size_t size, size_t alignment, bool is_readable, bool is_writable, const String& name) {
ASSERT(size);
ASSERT(alignment == PAGE_SIZE);
size = ((size / 4096) + 1) * 4096; // FIXME: Use ceil_div?
(void) allocate_region(laddr, size, String(name), is_readable, is_writable);
return laddr.asPtr();
};
bool success = loader.load();
if (!success) {
m_page_directory = old_page_directory;
MM.enter_process_paging_scope(*this);
MM.release_page_directory(*new_page_directory);
m_regions = move(old_regions);
kprintf("sys$execve: Failure loading %s\n", path.characters());
return -ENOEXEC;
}
entry_eip = (dword)loader.symbol_ptr("_start");
if (!entry_eip) {
m_page_directory = old_page_directory;
MM.enter_process_paging_scope(*this);
MM.release_page_directory(*new_page_directory);
m_regions = move(old_regions);
return -ENOEXEC;
}
}
m_signal_stack_kernel_region = nullptr;
m_signal_stack_user_region = nullptr;
memset(m_signal_action_data, 0, sizeof(m_signal_action_data));
m_signal_mask = 0xffffffff;
m_pending_signals = 0;
for (size_t i = 0; i < m_fds.size(); ++i) {
auto& daf = m_fds[i];
if (daf.descriptor && daf.flags & FD_CLOEXEC) {
daf.descriptor->close();
daf = { };
}
}
// We cli() manually here because we don't want to get interrupted between do_exec() and Schedule::yield().
// The reason is that the task redirection we've set up above will be clobbered by the timer IRQ.
// If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec().
cli();
Scheduler::prepare_to_modify_tss(*this);
m_name = parts.takeLast();
dword old_esp0 = m_tss.esp0;
memset(&m_tss, 0, sizeof(m_tss));
m_tss.eflags = 0x0202;
m_tss.eip = entry_eip;
m_tss.cs = 0x1b;
m_tss.ds = 0x23;
m_tss.es = 0x23;
m_tss.fs = 0x23;
m_tss.gs = 0x23;
m_tss.ss = 0x23;
m_tss.cr3 = (dword)m_page_directory;
m_stack_region = allocate_region(LinearAddress(), defaultStackSize, "stack");
ASSERT(m_stack_region);
m_stackTop3 = m_stack_region->linearAddress.offset(defaultStackSize).get();
m_tss.esp = m_stackTop3;
m_tss.ss0 = 0x10;
m_tss.esp0 = old_esp0;
m_tss.ss2 = m_pid;
MM.release_page_directory(*old_page_directory);
m_executable = descriptor->vnode();
m_arguments = move(arguments);
m_initialEnvironment = move(environment);
#ifdef TASK_DEBUG
kprintf("Process %u (%s) exec'd %s @ %p\n", pid(), name().characters(), path.characters(), m_tss.eip);
#endif
set_state(Skip1SchedulerPass);
return 0;
}
int Process::exec(const String& path, Vector<String>&& arguments, Vector<String>&& environment)
{
// The bulk of exec() is done by do_exec(), which ensures that all locals
// are cleaned up by the time we yield-teleport below.
int rc = do_exec(path, move(arguments), move(environment));
if (rc < 0)
return rc;
if (current == this) {
Scheduler::yield();
ASSERT_NOT_REACHED();
}
return 0;
}
int Process::sys$execve(const char* filename, const char** argv, const char** envp)
{
if (!validate_read_str(filename))
return -EFAULT;
if (argv) {
if (!validate_read_typed(argv))
return -EFAULT;
for (size_t i = 0; argv[i]; ++i) {
if (!validate_read_str(argv[i]))
return -EFAULT;
}
}
if (envp) {
if (!validate_read_typed(envp))
return -EFAULT;
for (size_t i = 0; envp[i]; ++i) {
if (!validate_read_str(envp[i]))
return -EFAULT;
}
}
String path(filename);
auto parts = path.split('/');
Vector<String> arguments;
if (argv) {
for (size_t i = 0; argv[i]; ++i) {
arguments.append(argv[i]);
}
} else {
arguments.append(parts.last());
}
Vector<String> environment;
if (envp) {
for (size_t i = 0; envp[i]; ++i)
environment.append(envp[i]);
}
int rc = exec(path, move(arguments), move(environment));
ASSERT(rc < 0); // We should never continue after a successful exec!
return rc;
}
Process* Process::create_user_process(const String& path, uid_t uid, gid_t gid, pid_t parent_pid, int& error, Vector<String>&& arguments, Vector<String>&& environment, TTY* tty)
{
// FIXME: Don't split() the path twice (sys$spawn also does it...)
auto parts = path.split('/');
if (arguments.isEmpty()) {
arguments.append(parts.last());
}
RetainPtr<Vnode> cwd;
{
InterruptDisabler disabler;
if (auto* parent = Process::from_pid(parent_pid))
cwd = parent->m_cwd.copyRef();
}
if (!cwd)
cwd = VFS::the().root();
auto* process = new Process(parts.takeLast(), uid, gid, parent_pid, Ring3, move(cwd), nullptr, tty);
error = process->exec(path, move(arguments), move(environment));
if (error != 0)
return nullptr;
ProcFS::the().add_process(*process);
{
InterruptDisabler disabler;
g_processes->prepend(process);
system.nprocess++;
}
#ifdef TASK_DEBUG
kprintf("Process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip);
#endif
error = 0;
return process;
}
int Process::sys$get_environment(char*** environ)
{
auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "environ");
if (!region)
return -ENOMEM;
MM.mapRegion(*this, *region);
char* envpage = (char*)region->linearAddress.get();
*environ = (char**)envpage;
char* bufptr = envpage + (sizeof(char*) * (m_initialEnvironment.size() + 1));
for (size_t i = 0; i < m_initialEnvironment.size(); ++i) {
(*environ)[i] = bufptr;
memcpy(bufptr, m_initialEnvironment[i].characters(), m_initialEnvironment[i].length());
bufptr += m_initialEnvironment[i].length();
*(bufptr++) = '\0';
}
(*environ)[m_initialEnvironment.size()] = nullptr;
return 0;
}
int Process::sys$get_arguments(int* argc, char*** argv)
{
auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "argv");
if (!region)
return -ENOMEM;
MM.mapRegion(*this, *region);
char* argpage = (char*)region->linearAddress.get();
*argc = m_arguments.size();
*argv = (char**)argpage;
char* bufptr = argpage + (sizeof(char*) * m_arguments.size());
for (size_t i = 0; i < m_arguments.size(); ++i) {
(*argv)[i] = bufptr;
memcpy(bufptr, m_arguments[i].characters(), m_arguments[i].length());
bufptr += m_arguments[i].length();
*(bufptr++) = '\0';
}
return 0;
}
Process* Process::create_kernel_process(void (*e)(), String&& name)
{
auto* process = new Process(move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0);
process->m_tss.eip = (dword)e;
if (process->pid() != 0) {
{
InterruptDisabler disabler;
g_processes->prepend(process);
system.nprocess++;
}
ProcFS::the().add_process(*process);
#ifdef TASK_DEBUG
kprintf("Kernel process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip);
#endif
}
return process;
}
Process::Process(String&& name, uid_t uid, gid_t gid, pid_t ppid, RingLevel ring, RetainPtr<Vnode>&& cwd, RetainPtr<Vnode>&& executable, TTY* tty, Process* fork_parent)
: m_name(move(name))
, m_pid(next_pid++) // FIXME: RACE: This variable looks racy!
, m_uid(uid)
, m_gid(gid)
, m_euid(uid)
, m_egid(gid)
, m_state(Runnable)
, m_ring(ring)
, m_cwd(move(cwd))
, m_executable(move(executable))
, m_tty(tty)
, m_ppid(ppid)
{
m_gids.set(m_gid);
if (fork_parent) {
m_sid = fork_parent->m_sid;
m_pgid = fork_parent->m_pgid;
} else {
// FIXME: Use a ProcessHandle? Presumably we're executing *IN* the parent right now though..
InterruptDisabler disabler;
if (auto* parent = Process::from_pid(m_ppid)) {
m_sid = parent->m_sid;
m_pgid = parent->m_pgid;
}
}
m_page_directory = (PageDirectory*)kmalloc_page_aligned(sizeof(PageDirectory));
#ifdef MM_DEBUG
dbgprintf("Process %u ctor: PD=%x created\n", pid(), m_page_directory);
#endif
MM.populate_page_directory(*m_page_directory);
if (fork_parent) {
m_fds.resize(fork_parent->m_fds.size());
for (size_t i = 0; i < fork_parent->m_fds.size(); ++i) {
if (!fork_parent->m_fds[i].descriptor)
continue;
#ifdef FORK_DEBUG
dbgprintf("fork: cloning fd %u... (%p) istty? %u\n", i, fork_parent->m_fds[i].ptr(), fork_parent->m_fds[i]->isTTY());
#endif
m_fds[i].descriptor = fork_parent->m_fds[i].descriptor->clone();
m_fds[i].flags = fork_parent->m_fds[i].flags;
}
} else {
m_fds.resize(m_max_open_file_descriptors);
if (tty) {
m_fds[0].set(tty->open(O_RDONLY));
m_fds[1].set(tty->open(O_WRONLY));
m_fds[2].set(tty->open(O_WRONLY));
}
}
if (fork_parent)
m_nextRegion = fork_parent->m_nextRegion;
else
m_nextRegion = LinearAddress(0x10000000);
if (fork_parent) {
memcpy(&m_tss, &fork_parent->m_tss, sizeof(m_tss));
} else {
memset(&m_tss, 0, sizeof(m_tss));
// Only IF is set when a process boots.
m_tss.eflags = 0x0202;
word cs, ds, ss;
if (isRing0()) {
cs = 0x08;
ds = 0x10;
ss = 0x10;
} else {
cs = 0x1b;
ds = 0x23;
ss = 0x23;
}
m_tss.ds = ds;
m_tss.es = ds;
m_tss.fs = ds;
m_tss.gs = ds;
m_tss.ss = ss;
m_tss.cs = cs;
}
m_tss.cr3 = (dword)m_page_directory;
if (isRing0()) {
// FIXME: This memory is leaked.
// But uh, there's also no kernel process termination, so I guess it's not technically leaked...
dword stackBottom = (dword)kmalloc_eternal(defaultStackSize);
m_stackTop0 = (stackBottom + defaultStackSize) & 0xffffff8;
m_tss.esp = m_stackTop0;
} else {
if (fork_parent) {
m_stackTop3 = fork_parent->m_stackTop3;
} else {
auto* region = allocate_region(LinearAddress(), defaultStackSize, "stack");
ASSERT(region);
m_stackTop3 = region->linearAddress.offset(defaultStackSize).get();
m_tss.esp = m_stackTop3;
}
}
if (isRing3()) {
// Ring3 processes need a separate stack for Ring0.
m_kernelStack = kmalloc(defaultStackSize);
m_stackTop0 = ((dword)m_kernelStack + defaultStackSize) & 0xffffff8;
m_tss.ss0 = 0x10;
m_tss.esp0 = m_stackTop0;
}
// HACK: Ring2 SS in the TSS is the current PID.
m_tss.ss2 = m_pid;
m_farPtr.offset = 0x98765432;
}
Process::~Process()
{
InterruptDisabler disabler;
ProcFS::the().remove_process(*this);
system.nprocess--;
gdt_free_entry(selector());
if (m_kernelStack) {
kfree(m_kernelStack);
m_kernelStack = nullptr;
}
MM.release_page_directory(*m_page_directory);
}
void Process::dumpRegions()
{
kprintf("Process %s(%u) regions:\n", name().characters(), pid());
kprintf("BEGIN END SIZE NAME\n");
for (auto& region : m_regions) {
kprintf("%x -- %x %x %s\n",
region->linearAddress.get(),
region->linearAddress.offset(region->size - 1).get(),
region->size,
region->name.characters());
}
}
void Process::sys$exit(int status)
{
cli();
#ifdef TASK_DEBUG
kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status);
#endif
set_state(Dead);
m_termination_status = status;
m_termination_signal = 0;
Scheduler::pick_next_and_switch_now();
ASSERT_NOT_REACHED();
}
void Process::terminate_due_to_signal(byte signal)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(signal < 32);
dbgprintf("terminate_due_to_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
m_termination_status = 0;
m_termination_signal = signal;
set_state(Dead);
}
void Process::send_signal(byte signal, Process* sender)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(signal < 32);
m_pending_signals |= 1 << signal;
if (sender)
dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, name().characters(), pid());
else
dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, name().characters(), pid());
}
bool Process::has_unmasked_pending_signals() const
{
return m_pending_signals & m_signal_mask;
}
bool Process::dispatch_one_pending_signal()
{
ASSERT_INTERRUPTS_DISABLED();
dword signal_candidates = m_pending_signals & m_signal_mask;
ASSERT(signal_candidates);
byte signal = 0;
for (; signal < 32; ++signal) {
if (signal_candidates & (1 << signal)) {
break;
}
}
return dispatch_signal(signal);
}
bool Process::dispatch_signal(byte signal)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(signal < 32);
dbgprintf("dispatch_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
auto& action = m_signal_action_data[signal];
// FIXME: Implement SA_SIGINFO signal handlers.
ASSERT(!(action.flags & SA_SIGINFO));
auto handler_laddr = action.handler_or_sigaction;
if (handler_laddr.is_null()) {
// FIXME: Is termination really always the appropriate action?
terminate_due_to_signal(signal);
return true;
}
m_pending_signals &= ~(1 << signal);
if (handler_laddr.asPtr() == SIG_IGN) {
dbgprintf("%s(%u) ignored signal %u\n", name().characters(), pid(), signal); return false;
}
Scheduler::prepare_to_modify_tss(*this);
word ret_cs = m_tss.cs;
dword ret_eip = m_tss.eip;
dword ret_eflags = m_tss.eflags;
bool interrupting_in_kernel = (ret_cs & 3) == 0;
if (interrupting_in_kernel) {
dbgprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", name().characters(), pid(), toString(state()), ret_cs, ret_eip);
ASSERT(is_blocked());
m_tss_to_resume_kernel = m_tss;
#ifdef SIGNAL_DEBUG
dbgprintf("resume tss pc: %w:%x\n", m_tss_to_resume_kernel.cs, m_tss_to_resume_kernel.eip);
#endif
}
ProcessPagingScope pagingScope(*this);
if (interrupting_in_kernel) {
if (!m_signal_stack_user_region) {
m_signal_stack_user_region = allocate_region(LinearAddress(), defaultStackSize, "signal stack (user)");
ASSERT(m_signal_stack_user_region);
m_signal_stack_kernel_region = allocate_region(LinearAddress(), defaultStackSize, "signal stack (kernel)");
ASSERT(m_signal_stack_user_region);
}
m_tss.ss = 0x23;
m_tss.esp = m_signal_stack_user_region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8;
m_tss.ss0 = 0x10;
m_tss.esp0 = m_signal_stack_kernel_region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8;
push_value_on_stack(ret_eflags);
push_value_on_stack(ret_cs);
push_value_on_stack(ret_eip);
} else {
push_value_on_stack(ret_cs);
push_value_on_stack(ret_eip);
push_value_on_stack(ret_eflags);
}
// PUSHA
dword old_esp = m_tss.esp;
push_value_on_stack(m_tss.eax);
push_value_on_stack(m_tss.ecx);
push_value_on_stack(m_tss.edx);
push_value_on_stack(m_tss.ebx);
push_value_on_stack(old_esp);
push_value_on_stack(m_tss.ebp);
push_value_on_stack(m_tss.esi);
push_value_on_stack(m_tss.edi);
m_tss.eax = (dword)signal;
m_tss.cs = 0x1b;
m_tss.ds = 0x23;
m_tss.es = 0x23;
m_tss.fs = 0x23;
m_tss.gs = 0x23;
m_tss.eip = handler_laddr.get();
if (m_return_to_ring3_from_signal_trampoline.is_null()) {
// FIXME: This should be a global trampoline shared by all processes, not one created per process!
// FIXME: Remap as read-only after setup.
auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "signal_trampoline", true, true);
m_return_to_ring3_from_signal_trampoline = region->linearAddress;
byte* code_ptr = m_return_to_ring3_from_signal_trampoline.asPtr();
*code_ptr++ = 0x61; // popa
*code_ptr++ = 0x9d; // popf
*code_ptr++ = 0xc3; // ret
*code_ptr++ = 0x0f; // ud2
*code_ptr++ = 0x0b;
m_return_to_ring0_from_signal_trampoline = LinearAddress((dword)code_ptr);
*code_ptr++ = 0x61; // popa
*code_ptr++ = 0xb8; // mov eax, <dword>
*(dword*)code_ptr = Syscall::SC_sigreturn;
code_ptr += sizeof(dword);
*code_ptr++ = 0xcd; // int 0x80
*code_ptr++ = 0x80;
*code_ptr++ = 0x0f; // ud2
*code_ptr++ = 0x0b;
// FIXME: For !SA_NODEFER, maybe we could do something like emitting an int 0x80 syscall here that
// unmasks the signal so it can be received again? I guess then I would need one trampoline
// per signal number if it's hard-coded, but it's just a few bytes per each.
}
if (interrupting_in_kernel)
push_value_on_stack(m_return_to_ring0_from_signal_trampoline.get());
else
push_value_on_stack(m_return_to_ring3_from_signal_trampoline.get());
// FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
set_state(Skip1SchedulerPass);
#ifdef SIGNAL_DEBUG
dbgprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", name().characters(), pid(), toString(state()), m_tss.cs, m_tss.eip);
#endif
return true;
}
void Process::sys$sigreturn()
{
InterruptDisabler disabler;
Scheduler::prepare_to_modify_tss(*this);
m_tss = m_tss_to_resume_kernel;
#ifdef SIGNAL_DEBUG
dbgprintf("sys$sigreturn in %s(%u)\n", name().characters(), pid());
dbgprintf(" -> resuming execution at %w:%x\n", m_tss.cs, m_tss.eip);
#endif
set_state(Skip1SchedulerPass);
Scheduler::yield();
kprintf("sys$sigreturn failed in %s(%u)\n", name().characters(), pid());
ASSERT_NOT_REACHED();
}
void Process::push_value_on_stack(dword value)
{
m_tss.esp -= 4;
dword* stack_ptr = (dword*)m_tss.esp;
*stack_ptr = value;
}
void Process::crash()
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(state() != Dead);
m_termination_signal = SIGSEGV;
set_state(Dead);
dumpRegions();
Scheduler::pick_next_and_switch_now();
ASSERT_NOT_REACHED();
}
Process* Process::from_pid(pid_t pid)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = g_processes->head(); process; process = process->next()) {
if (process->pid() == pid)
return process;
}
return nullptr;
}
FileDescriptor* Process::file_descriptor(int fd)
{
if (fd < 0)
return nullptr;
if ((size_t)fd < m_fds.size())
return m_fds[fd].descriptor.ptr();
return nullptr;
}
const FileDescriptor* Process::file_descriptor(int fd) const
{
if (fd < 0)
return nullptr;
if ((size_t)fd < m_fds.size())
return m_fds[fd].descriptor.ptr();
return nullptr;
}
ssize_t Process::sys$get_dir_entries(int fd, void* buffer, size_t size)
{
if (!validate_write(buffer, size))
return -EFAULT;
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
return descriptor->get_dir_entries((byte*)buffer, size);
}
int Process::sys$lseek(int fd, off_t offset, int whence)
{
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
return descriptor->seek(offset, whence);
}
int Process::sys$ttyname_r(int fd, char* buffer, size_t size)
{
if (!validate_write(buffer, size))
return -EFAULT;
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
if (!descriptor->is_tty())
return -ENOTTY;
auto ttyName = descriptor->tty()->tty_name();
if (size < ttyName.length() + 1)
return -ERANGE;
strcpy(buffer, ttyName.characters());
return 0;
}
ssize_t Process::sys$write(int fd, const void* data, size_t size)
{
if (!validate_read(data, size))
return -EFAULT;
#ifdef DEBUG_IO
dbgprintf("%s(%u): sys$write(%d, %p, %u)\n", name().characters(), pid(), fd, data, size);
#endif
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
ssize_t nwritten = 0;
if (descriptor->is_blocking()) {
while (nwritten < (ssize_t)size) {
#ifdef IO_DEBUG
dbgprintf("while %u < %u\n", nwritten, size);
#endif
if (!descriptor->can_write()) {
#ifdef IO_DEBUG
dbgprintf("block write on %d\n", fd);
#endif
m_blocked_fd = fd;
block(BlockedWrite);
Scheduler::yield();
}
ssize_t rc = descriptor->write((const byte*)data + nwritten, size - nwritten);
#ifdef IO_DEBUG
dbgprintf(" -> write returned %d\n", rc);
#endif
if (rc < 0) {
// FIXME: Support returning partial nwritten with errno.
ASSERT(nwritten == 0);
return rc;
}
if (rc == 0)
break;
if (has_unmasked_pending_signals()) {
block(BlockedSignal);
Scheduler::yield();
if (nwritten == 0)
return -EINTR;
}
nwritten += rc;
}
} else {
nwritten = descriptor->write((const byte*)data, size);
}
if (has_unmasked_pending_signals()) {
block(BlockedSignal);
Scheduler::yield();
if (nwritten == 0)
return -EINTR;
}
#ifdef DEBUG_IO
dbgprintf("%s(%u) sys$write: nwritten=%u\n", name().characters(), pid(), nwritten);
#endif
return nwritten;
}
ssize_t Process::sys$read(int fd, void* outbuf, size_t nread)
{
if (!validate_write(outbuf, nread))
return -EFAULT;
#ifdef DEBUG_IO
dbgprintf("%s(%u) sys$read(%d, %p, %u)\n", name().characters(), pid(), fd, outbuf, nread);
#endif
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
if (descriptor->is_blocking()) {
if (!descriptor->has_data_available_for_reading()) {
m_fdBlockedOnRead = fd;
block(BlockedRead);
sched_yield();
if (m_was_interrupted_while_blocked)
return -EINTR;
}
}
nread = descriptor->read((byte*)outbuf, nread);
#ifdef DEBUG_IO
dbgprintf("%s(%u) Process::sys$read: nread=%u\n", name().characters(), pid(), nread);
#endif
return nread;
}
int Process::sys$close(int fd)
{
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
int rc = descriptor->close();
m_fds[fd] = { };
return rc;
}
int Process::sys$access(const char* pathname, int mode)
{
(void) mode;
if (!validate_read_str(pathname))
return -EFAULT;
ASSERT_NOT_REACHED();
}
int Process::sys$fcntl(int fd, int cmd, dword arg)
{
(void) cmd;
(void) arg;
dbgprintf("sys$fcntl: fd=%d, cmd=%d, arg=%u\n", fd, cmd, arg);
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
// NOTE: The FD flags are not shared between FileDescriptor objects.
// This means that dup() doesn't copy the FD_CLOEXEC flag!
switch (cmd) {
case F_DUPFD: {
int arg_fd = (int)arg;
if (arg_fd < 0)
return -EINVAL;
int new_fd = -1;
for (int i = arg_fd; i < (int)m_max_open_file_descriptors; ++i) {
if (!m_fds[i]) {
new_fd = i;
break;
}
}
if (new_fd == -1)
return -EMFILE;
m_fds[new_fd].set(descriptor);
break;
}
case F_GETFD:
return m_fds[fd].flags;
case F_SETFD:
m_fds[fd].flags = arg;
break;
case F_GETFL:
return descriptor->file_flags();
case F_SETFL:
descriptor->set_file_flags(arg);
break;
default:
ASSERT_NOT_REACHED();
}
return 0;
}
int Process::sys$fstat(int fd, Unix::stat* statbuf)
{
if (!validate_write_typed(statbuf))
return -EFAULT;
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
descriptor->stat(statbuf);
return 0;
}
int Process::sys$lstat(const char* path, Unix::stat* statbuf)
{
if (!validate_write_typed(statbuf))
return -EFAULT;
int error;
auto descriptor = VFS::the().open(move(path), error, O_NOFOLLOW_NOERROR, cwd_inode()->identifier());
if (!descriptor)
return error;
descriptor->stat(statbuf);
return 0;
}
int Process::sys$stat(const char* path, Unix::stat* statbuf)
{
if (!validate_write_typed(statbuf))
return -EFAULT;
int error;
auto descriptor = VFS::the().open(move(path), error, 0, cwd_inode()->identifier());
if (!descriptor)
return error;
descriptor->stat(statbuf);
return 0;
}
int Process::sys$readlink(const char* path, char* buffer, size_t size)
{
if (!validate_read_str(path))
return -EFAULT;
if (!validate_write(buffer, size))
return -EFAULT;
int error;
auto descriptor = VFS::the().open(path, error, O_RDONLY | O_NOFOLLOW_NOERROR, cwd_inode()->identifier());
if (!descriptor)
return error;
if (!descriptor->metadata().isSymbolicLink())
return -EINVAL;
auto contents = descriptor->read_entire_file();
if (!contents)
return -EIO; // FIXME: Get a more detailed error from VFS.
memcpy(buffer, contents.pointer(), min(size, contents.size()));
if (contents.size() + 1 < size)
buffer[contents.size()] = '\0';
return 0;
}
int Process::sys$chdir(const char* path)
{
if (!validate_read_str(path))
return -EFAULT;
int error;
auto descriptor = VFS::the().open(path, error, 0, cwd_inode()->identifier());
if (!descriptor)
return error;
if (!descriptor->is_directory())
return -ENOTDIR;
m_cwd = descriptor->vnode();
return 0;
}
int Process::sys$getcwd(char* buffer, size_t size)
{
if (!validate_write(buffer, size))
return -EFAULT;
ASSERT(cwd_inode());
auto path = VFS::the().absolute_path(*cwd_inode());
if (path.isNull())
return -EINVAL;
if (size < path.length() + 1)
return -ERANGE;
strcpy(buffer, path.characters());
return 0;
}
size_t Process::number_of_open_file_descriptors() const
{
size_t count = 0;
for (auto& descriptor : m_fds) {
if (descriptor)
++count;
}
return count;
}
int Process::sys$open(const char* path, int options)
{
#ifdef DEBUG_IO
dbgprintf("%s(%u) sys$open(\"%s\")\n", name().characters(), pid(), path);
#endif
if (!validate_read_str(path))
return -EFAULT;
if (number_of_open_file_descriptors() >= m_max_open_file_descriptors)
return -EMFILE;
int error;
auto descriptor = VFS::the().open(path, error, options, cwd_inode()->identifier());
if (!descriptor)
return error;
if (options & O_DIRECTORY && !descriptor->is_directory())
return -ENOTDIR; // FIXME: This should be handled by VFS::open.
int fd = 0;
for (; fd < (int)m_max_open_file_descriptors; ++fd) {
if (!m_fds[fd])
break;
}
dword flags = (options & O_CLOEXEC) ? FD_CLOEXEC : 0;
m_fds[fd].set(move(descriptor), flags);
return fd;
}
int Process::alloc_fd()
{
int fd = -1;
for (int i = 0; i < (int)m_max_open_file_descriptors; ++i) {
if (!m_fds[i]) {
fd = i;
break;
}
}
return fd;
}
int Process::sys$pipe(int pipefd[2])
{
if (!validate_write_typed(pipefd))
return -EFAULT;
if (number_of_open_file_descriptors() + 2 > max_open_file_descriptors())
return -EMFILE;
auto fifo = FIFO::create();
int reader_fd = alloc_fd();
m_fds[reader_fd].set(FileDescriptor::create_pipe_reader(*fifo));
pipefd[0] = reader_fd;
int writer_fd = alloc_fd();
m_fds[writer_fd].set(FileDescriptor::create_pipe_writer(*fifo));
pipefd[1] = writer_fd;
return 0;
}
int Process::sys$killpg(int pgrp, int signum)
{
if (signum < 1 || signum >= 32)
return -EINVAL;
(void) pgrp;
ASSERT_NOT_REACHED();
}
int Process::sys$setuid(uid_t)
{
ASSERT_NOT_REACHED();
}
int Process::sys$setgid(gid_t)
{
ASSERT_NOT_REACHED();
}
unsigned Process::sys$alarm(unsigned seconds)
{
(void) seconds;
ASSERT_NOT_REACHED();
}
int Process::sys$uname(utsname* buf)
{
if (!validate_write_typed(buf))
return -EFAULT;
strcpy(buf->sysname, "Serenity");
strcpy(buf->release, "1.0-dev");
strcpy(buf->version, "FIXME");
strcpy(buf->machine, "i386");
strcpy(buf->nodename, getHostname().characters());
return 0;
}
int Process::sys$isatty(int fd)
{
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
if (!descriptor->is_tty())
return -ENOTTY;
return 1;
}
int Process::sys$kill(pid_t pid, int signal)
{
if (pid == 0) {
// FIXME: Send to same-group processes.
ASSERT(pid != 0);
}
if (pid == -1) {
// FIXME: Send to all processes.
ASSERT(pid != -1);
}
ASSERT(pid != current->pid()); // FIXME: Support this scenario.
InterruptDisabler disabler;
auto* peer = Process::from_pid(pid);
if (!peer)
return -ESRCH;
peer->send_signal(signal, this);
return 0;
}
int Process::sys$sleep(unsigned seconds)
{
if (!seconds)
return 0;
sleep(seconds * TICKS_PER_SECOND);
if (m_wakeupTime > system.uptime) {
ASSERT(m_was_interrupted_while_blocked);
dword ticks_left_until_original_wakeup_time = m_wakeupTime - system.uptime;
return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND;
}
return 0;
}
int Process::sys$gettimeofday(timeval* tv)
{
if (!validate_write_typed(tv))
return -EFAULT;
InterruptDisabler disabler;
auto now = RTC::now();
tv->tv_sec = now;
tv->tv_usec = 0;
return 0;
}
uid_t Process::sys$getuid()
{
return m_uid;
}
gid_t Process::sys$getgid()
{
return m_gid;
}
uid_t Process::sys$geteuid()
{
return m_euid;
}
gid_t Process::sys$getegid()
{
return m_egid;
}
pid_t Process::sys$getpid()
{
return m_pid;
}
pid_t Process::sys$getppid()
{
return m_ppid;
}
mode_t Process::sys$umask(mode_t mask)
{
auto old_mask = m_umask;
m_umask = mask;
return old_mask;
}
int Process::reap(Process& process)
{
InterruptDisabler disabler;
int exit_status = (process.m_termination_status << 8) | process.m_termination_signal;
dbgprintf("reap: %s(%u) {%s}\n", process.name().characters(), process.pid(), toString(process.state()));
ASSERT(process.state() == Dead);
g_processes->remove(&process);
delete &process;
return exit_status;
}
pid_t Process::sys$waitpid(pid_t waitee, int* wstatus, int options)
{
dbgprintf("sys$waitpid(%d, %p, %d)\n", waitee, wstatus, options);
// FIXME: Respect options
(void) options;
if (wstatus)
if (!validate_write_typed(wstatus))
return -EFAULT;
int dummy_wstatus;
int& exit_status = wstatus ? *wstatus : dummy_wstatus;
{
InterruptDisabler disabler;
if (waitee != -1 && !Process::from_pid(waitee))
return -ECHILD;
}
if (options & WNOHANG) {
if (waitee == -1) {
pid_t reaped_pid = 0;
InterruptDisabler disabler;
for_each_child([&reaped_pid, &exit_status] (Process& process) {
if (process.state() == Dead) {
reaped_pid = process.pid();
exit_status = reap(process);
}
return true;
});
return reaped_pid;
} else {
auto* waitee_process = Process::from_pid(waitee);
if (!waitee_process)
return -ECHILD;
if (waitee_process->state() == Dead) {
exit_status = reap(*waitee_process);
return waitee;
}
return 0;
}
}
m_waitee_pid = waitee;
block(BlockedWait);
sched_yield();
if (m_was_interrupted_while_blocked)
return -EINTR;
Process* waitee_process;
{
InterruptDisabler disabler;
// NOTE: If waitee was -1, m_waitee will have been filled in by the scheduler.
waitee_process = Process::from_pid(m_waitee_pid);
}
ASSERT(waitee_process);
exit_status = reap(*waitee_process);
return m_waitee_pid;
}
void Process::unblock()
{
if (current == this) {
kprintf("ignoring unblock() on current, %s(%u) {%s}\n", name().characters(), pid(), toString(state()));
return;
}
ASSERT(m_state != Process::Runnable && m_state != Process::Running);
system.nblocked--;
m_state = Process::Runnable;
}
void Process::block(Process::State new_state)
{
if (state() != Process::Running) {
kprintf("Process::block: %s(%u) block(%u/%s) with state=%u/%s\n", name().characters(), pid(), new_state, toString(new_state), state(), toString(state()));
}
ASSERT(state() == Process::Running);
system.nblocked++;
m_was_interrupted_while_blocked = false;
set_state(new_state);
}
void block(Process::State state)
{
current->block(state);
sched_yield();
}
void sleep(dword ticks)
{
ASSERT(current->state() == Process::Running);
current->setWakeupTime(system.uptime + ticks);
current->block(Process::BlockedSleep);
sched_yield();
}
bool Process::isValidAddressForKernel(LinearAddress laddr) const
{
// We check extra carefully here since the first 4MB of the address space is identity-mapped.
// This code allows access outside of the known used address ranges to get caught.
InterruptDisabler disabler;
if (laddr.get() >= ksyms().first().address && laddr.get() <= ksyms().last().address)
return true;
if (is_kmalloc_address(laddr.asPtr()))
return true;
return validate_read(laddr.asPtr(), 1);
}
bool Process::validate_read(const void* address, size_t size) const
{
if ((reinterpret_cast<dword>(address) & PAGE_MASK) != ((reinterpret_cast<dword>(address) + (size - 1)) & PAGE_MASK)) {
if (!MM.validate_user_read(*this, LinearAddress((dword)address).offset(size)))
return false;
}
return MM.validate_user_read(*this, LinearAddress((dword)address));
}
bool Process::validate_write(void* address, size_t size) const
{
if ((reinterpret_cast<dword>(address) & PAGE_MASK) != ((reinterpret_cast<dword>(address) + (size - 1)) & PAGE_MASK)) {
if (!MM.validate_user_write(*this, LinearAddress((dword)address).offset(size)))
return false;
}
return MM.validate_user_write(*this, LinearAddress((dword)address));
}
pid_t Process::sys$getsid(pid_t pid)
{
if (pid == 0)
return m_sid;
InterruptDisabler disabler;
auto* process = Process::from_pid(pid);
if (!process)
return -ESRCH;
if (m_sid != process->m_sid)
return -EPERM;
return process->m_sid;
}
pid_t Process::sys$setsid()
{
InterruptDisabler disabler;
bool found_process_with_same_pgid_as_my_pid = false;
Process::for_each_in_pgrp(pid(), [&] (auto&) {
found_process_with_same_pgid_as_my_pid = true;
return false;
});
if (found_process_with_same_pgid_as_my_pid)
return -EPERM;
m_sid = m_pid;
m_pgid = m_pid;
return m_sid;
}
pid_t Process::sys$getpgid(pid_t pid)
{
if (pid == 0)
return m_pgid;
InterruptDisabler disabler; // FIXME: Use a ProcessHandle
auto* process = Process::from_pid(pid);
if (!process)
return -ESRCH;
return process->m_pgid;
}
pid_t Process::sys$getpgrp()
{
return m_pgid;
}
static pid_t get_sid_from_pgid(pid_t pgid)
{
InterruptDisabler disabler;
auto* group_leader = Process::from_pid(pgid);
if (!group_leader)
return -1;
return group_leader->sid();
}
int Process::sys$setpgid(pid_t specified_pid, pid_t specified_pgid)
{
InterruptDisabler disabler; // FIXME: Use a ProcessHandle
pid_t pid = specified_pid ? specified_pid : m_pid;
if (specified_pgid < 0)
return -EINVAL;
auto* process = Process::from_pid(pid);
if (!process)
return -ESRCH;
pid_t new_pgid = specified_pgid ? specified_pgid : process->m_pid;
pid_t current_sid = get_sid_from_pgid(process->m_pgid);
pid_t new_sid = get_sid_from_pgid(new_pgid);
if (current_sid != new_sid) {
// Can't move a process between sessions.
return -EPERM;
}
// FIXME: There are more EPERM conditions to check for here..
process->m_pgid = new_pgid;
return 0;
}
int Process::sys$ioctl(int fd, unsigned request, unsigned arg)
{
auto* descriptor = file_descriptor(fd);
if (!descriptor)
return -EBADF;
if (!descriptor->is_character_device())
return -ENOTTY;
return descriptor->character_device()->ioctl(*this, request, arg);
}
int Process::sys$getdtablesize()
{
return m_max_open_file_descriptors;
}
int Process::sys$dup(int old_fd)
{
auto* descriptor = file_descriptor(old_fd);
if (!descriptor)
return -EBADF;
if (number_of_open_file_descriptors() == m_max_open_file_descriptors)
return -EMFILE;
int new_fd = 0;
for (; new_fd < (int)m_max_open_file_descriptors; ++new_fd) {
if (!m_fds[new_fd])
break;
}
m_fds[new_fd].set(descriptor);
return new_fd;
}
int Process::sys$dup2(int old_fd, int new_fd)
{
auto* descriptor = file_descriptor(old_fd);
if (!descriptor)
return -EBADF;
if (number_of_open_file_descriptors() == m_max_open_file_descriptors)
return -EMFILE;
m_fds[new_fd].set(descriptor);
return new_fd;
}
int Process::sys$sigprocmask(int how, const Unix::sigset_t* set, Unix::sigset_t* old_set)
{
if (old_set) {
if (!validate_read_typed(old_set))
return -EFAULT;
*old_set = m_signal_mask;
}
if (set) {
if (!validate_read_typed(set))
return -EFAULT;
switch (how) {
case SIG_BLOCK:
m_signal_mask &= ~(*set);
break;
case SIG_UNBLOCK:
m_signal_mask |= *set;
break;
case SIG_SETMASK:
m_signal_mask = *set;
break;
default:
return -EINVAL;
}
}
return 0;
}
int Process::sys$sigpending(Unix::sigset_t* set)
{
if (!validate_read_typed(set))
return -EFAULT;
*set = m_pending_signals;
return 0;
}
int Process::sys$sigaction(int signum, const Unix::sigaction* act, Unix::sigaction* old_act)
{
// FIXME: Fail with -EINVAL if attepmting to change action for SIGKILL or SIGSTOP.
if (signum < 1 || signum >= 32)
return -EINVAL;
if (!validate_read_typed(act))
return -EFAULT;
InterruptDisabler disabler; // FIXME: This should use a narrower lock.
auto& action = m_signal_action_data[signum];
if (old_act) {
if (!validate_write_typed(old_act))
return -EFAULT;
old_act->sa_flags = action.flags;
old_act->sa_restorer = (decltype(old_act->sa_restorer))action.restorer.get();
old_act->sa_sigaction = (decltype(old_act->sa_sigaction))action.handler_or_sigaction.get();
}
action.restorer = LinearAddress((dword)act->sa_restorer);
action.flags = act->sa_flags;
action.handler_or_sigaction = LinearAddress((dword)act->sa_sigaction);
return 0;
}
int Process::sys$getgroups(int count, gid_t* gids)
{
if (count < 0)
return -EINVAL;
ASSERT(m_gids.size() < MAX_PROCESS_GIDS);
if (!count)
return m_gids.size();
if (count != (int)m_gids.size())
return -EINVAL;
if (!validate_write_typed(gids, m_gids.size()))
return -EFAULT;
size_t i = 0;
for (auto gid : m_gids)
gids[i++] = gid;
return 0;
}
int Process::sys$setgroups(size_t count, const gid_t* gids)
{
if (!is_root())
return -EPERM;
if (count >= MAX_PROCESS_GIDS)
return -EINVAL;
if (!validate_read(gids, count))
return -EFAULT;
m_gids.clear();
m_gids.set(m_gid);
for (size_t i = 0; i < count; ++i)
m_gids.set(gids[i]);
return 0;
}
int Process::sys$mkdir(const char* pathname, mode_t mode)
{
if (!validate_read_str(pathname))
return -EFAULT;
if (strlen(pathname) >= 255)
return -ENAMETOOLONG;
int error;
if (!VFS::the().mkdir(pathname, mode, cwd_inode()->identifier(), error))
return error;
return 0;
}