ladybird/Kernel/init.cpp
2018-12-03 00:39:25 +01:00

313 lines
8.3 KiB
C++

#include "types.h"
#include "kmalloc.h"
#include "i386.h"
#include "i8253.h"
#include "Keyboard.h"
#include "Process.h"
#include "system.h"
#include "PIC.h"
#include "StdLib.h"
#include "Syscall.h"
#include "CMOS.h"
#include "IDEDiskDevice.h"
#include <VirtualFileSystem/NullDevice.h>
#include <VirtualFileSystem/ZeroDevice.h>
#include <VirtualFileSystem/FullDevice.h>
#include <VirtualFileSystem/RandomDevice.h>
#include <VirtualFileSystem/Ext2FileSystem.h>
#include <VirtualFileSystem/VirtualFileSystem.h>
#include <VirtualFileSystem/FileDescriptor.h>
#include <AK/OwnPtr.h>
#include "MemoryManager.h"
#include "ELFLoader.h"
#include "Console.h"
#include "ProcFileSystem.h"
#include "RTC.h"
#include "VirtualConsole.h"
#include "Scheduler.h"
#define KSYMS
#define SPAWN_MULTIPLE_SHELLS
//#define STRESS_TEST_SPAWNING
system_t system;
VirtualConsole* tty0;
VirtualConsole* tty1;
VirtualConsole* tty2;
VirtualConsole* tty3;
Keyboard* keyboard;
static byte parseHexDigit(char nibble)
{
if (nibble >= '0' && nibble <= '9')
return nibble - '0';
ASSERT(nibble >= 'a' && nibble <= 'f');
return 10 + (nibble - 'a');
}
#ifdef KSYMS
static Vector<KSym, KmallocEternalAllocator>* s_ksyms;
static bool s_ksyms_ready;
Vector<KSym, KmallocEternalAllocator>& ksyms()
{
return *s_ksyms;
}
bool ksyms_ready()
{
return s_ksyms_ready;
}
const KSym* ksymbolicate(dword address)
{
if (address < ksyms().first().address || address > ksyms().last().address)
return nullptr;
for (unsigned i = 0; i < ksyms().size(); ++i) {
if (address < ksyms()[i + 1].address)
return &ksyms()[i];
}
return nullptr;
}
static void loadKsyms(const ByteBuffer& buffer)
{
// FIXME: It's gross that this vector grows dynamically rather than being sized-to-fit.
// We're wasting that eternal kmalloc memory.
s_ksyms = new Vector<KSym, KmallocEternalAllocator>;
auto* bufptr = (const char*)buffer.pointer();
auto* startOfName = bufptr;
dword address = 0;
dword ksym_count = 0;
for (unsigned i = 0; i < 8; ++i)
ksym_count = (ksym_count << 4) | parseHexDigit(*(bufptr++));
s_ksyms->ensureCapacity(ksym_count);
++bufptr; // skip newline
kprintf("Loading ksyms: \033[s");
while (bufptr < buffer.endPointer()) {
for (unsigned i = 0; i < 8; ++i)
address = (address << 4) | parseHexDigit(*(bufptr++));
bufptr += 3;
startOfName = bufptr;
while (*(++bufptr)) {
if (*bufptr == '\n') {
break;
}
}
// FIXME: The Strings here should be eternally allocated too.
ksyms().append({ address, String(startOfName, bufptr - startOfName) });
if ((ksyms().size() % 10) == 0 || ksym_count == ksyms().size())
kprintf("\033[u\033[s%u/%u", ksyms().size(), ksym_count);
++bufptr;
}
kprintf("\n");
s_ksyms_ready = true;
}
void dump_backtrace(bool use_ksyms)
{
if (!current) {
HANG;
return;
}
if (use_ksyms && !ksyms_ready()) {
HANG;
return;
}
struct RecognizedSymbol {
dword address;
const KSym* ksym;
};
Vector<RecognizedSymbol> recognizedSymbols;
if (use_ksyms) {
for (dword* stackPtr = (dword*)&use_ksyms; current->isValidAddressForKernel(LinearAddress((dword)stackPtr)); stackPtr = (dword*)*stackPtr) {
dword retaddr = stackPtr[1];
if (auto* ksym = ksymbolicate(retaddr))
recognizedSymbols.append({ retaddr, ksym });
}
} else{
for (dword* stackPtr = (dword*)&use_ksyms; current->isValidAddressForKernel(LinearAddress((dword)stackPtr)); stackPtr = (dword*)*stackPtr) {
dword retaddr = stackPtr[1];
kprintf("%x (next: %x)\n", retaddr, stackPtr ? (dword*)*stackPtr : 0);
}
return;
}
size_t bytesNeeded = 0;
for (auto& symbol : recognizedSymbols) {
bytesNeeded += symbol.ksym->name.length() + 8 + 16;
}
for (auto& symbol : recognizedSymbols) {
unsigned offset = symbol.address - symbol.ksym->address;
dbgprintf("%p %s +%u\n", symbol.address, symbol.ksym->name.characters(), offset);
}
}
#endif
#ifdef STRESS_TEST_SPAWNING
static void spawn_stress() NORETURN;
static void spawn_stress()
{
dword lastAlloc = sum_alloc;
for (unsigned i = 0; i < 10000; ++i) {
int error;
Process::create_user_process("/bin/id", (uid_t)100, (gid_t)100, (pid_t)0, error, Vector<String>(), Vector<String>(), tty0);
kprintf("malloc stats: alloc:%u free:%u page_aligned:%u eternal:%u\n", sum_alloc, sum_free, kmalloc_page_aligned, kmalloc_sum_eternal);
kprintf("delta:%u\n", sum_alloc - lastAlloc);
lastAlloc = sum_alloc;
sleep(60);
}
for (;;) {
asm volatile("hlt");
}
}
#endif
static void init_stage2() NORETURN;
static void init_stage2()
{
Syscall::initialize();
auto vfs = make<VFS>();
auto dev_zero = make<ZeroDevice>();
vfs->register_character_device(*dev_zero);
auto dev_null = make<NullDevice>();
vfs->register_character_device(*dev_null);
auto dev_full = make<FullDevice>();
vfs->register_character_device(*dev_full);
auto dev_random = make<RandomDevice>();
vfs->register_character_device(*dev_random);
vfs->register_character_device(*keyboard);
vfs->register_character_device(*tty0);
vfs->register_character_device(*tty1);
vfs->register_character_device(*tty2);
vfs->register_character_device(*tty3);
auto dev_hd0 = IDEDiskDevice::create();
auto e2fs = Ext2FS::create(dev_hd0.copyRef());
e2fs->initialize();
vfs->mount_root(e2fs.copyRef());
#ifdef KSYMS
{
int error;
auto descriptor = vfs->open("/kernel.map", error);
if (!descriptor) {
kprintf("Failed to open /kernel.map\n");
} else {
auto buffer = descriptor->read_entire_file();
ASSERT(buffer);
loadKsyms(buffer);
}
}
#endif
vfs->mount(ProcFS::the(), "/proc");
Vector<String> environment;
environment.append("TERM=ansi");
int error;
Process::create_user_process("/bin/sh", (uid_t)100, (gid_t)100, (pid_t)0, error, Vector<String>(), move(environment), tty0);
#ifdef SPAWN_MULTIPLE_SHELLS
Process::create_user_process("/bin/sh", (uid_t)100, (gid_t)100, (pid_t)0, error, Vector<String>(), Vector<String>(), tty1);
Process::create_user_process("/bin/sh", (uid_t)100, (gid_t)100, (pid_t)0, error, Vector<String>(), Vector<String>(), tty2);
Process::create_user_process("/bin/sh", (uid_t)100, (gid_t)100, (pid_t)0, error, Vector<String>(), Vector<String>(), tty3);
#endif
#ifdef STRESS_TEST_SPAWNING
Process::create_kernel_process(spawn_stress, "spawn_stress");
#endif
current->sys$exit(0);
ASSERT_NOT_REACHED();
}
void init() NORETURN;
void init()
{
cli();
#ifdef KSYMS
s_ksyms = nullptr;
s_ksyms_ready = false;
#endif
kmalloc_init();
auto console = make<Console>();
RTC::initialize();
PIC::initialize();
gdt_init();
idt_init();
keyboard = new Keyboard;
VirtualConsole::initialize();
tty0 = new VirtualConsole(0, VirtualConsole::AdoptCurrentVGABuffer);
tty1 = new VirtualConsole(1);
tty2 = new VirtualConsole(2);
tty3 = new VirtualConsole(3);
VirtualConsole::switch_to(0);
kprintf("Starting Serenity Operating System...\n");
MemoryManager::initialize();
VFS::initialize_globals();
StringImpl::initializeGlobals();
PIT::initialize();
memset(&system, 0, sizeof(system));
word base_memory = (CMOS::read(0x16) << 8) | CMOS::read(0x15);
word ext_memory = (CMOS::read(0x18) << 8) | CMOS::read(0x17);
kprintf("%u kB base memory\n", base_memory);
kprintf("%u kB extended memory\n", ext_memory);
auto procfs = ProcFS::create();
procfs->initialize();
Process::initialize();
Process::create_kernel_process(init_stage2, "init_stage2");
Scheduler::pick_next();
sti();
// This now becomes the idle process :^)
for (;;) {
asm("hlt");
}
}
void log_try_lock(const char* where)
{
kprintf("[%u] >>> locking... (%s)\n", current->pid(), where);
}
void log_locked(const char* where)
{
kprintf("[%u] >>> locked() in %s\n", current->pid(), where);
}
void log_unlocked(const char* where)
{
kprintf("[%u] <<< unlocked()\n", current->pid(), where);
}