ladybird/Kernel/VM/AnonymousVMObject.cpp
asynts 723effd051 Everywhere: Replace a bundle of dbg with dbgln.
These changes are arbitrarily divided into multiple commits to make it
easier to find potentially introduced bugs with git bisect.Everything:
2021-01-11 11:55:47 +01:00

501 lines
18 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <Kernel/Process.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PhysicalPage.h>
//#define COMMIT_DEBUG
//#define PAGE_FAULT_DEBUG
namespace Kernel {
RefPtr<VMObject> AnonymousVMObject::clone()
{
// We need to acquire our lock so we copy a sane state
ScopedSpinLock lock(m_lock);
// We're the parent. Since we're about to become COW we need to
// commit the number of pages that we need to potentially allocate
// so that the parent is still guaranteed to be able to have all
// non-volatile memory available.
size_t need_cow_pages = 0;
{
// We definitely need to commit non-volatile areas
for_each_nonvolatile_range([&](const VolatilePageRange& nonvolatile_range) {
need_cow_pages += nonvolatile_range.count;
return IterationDecision::Continue;
});
}
#ifdef COMMIT_DEBUG
klog() << "Cloning " << this << ", need " << need_cow_pages << " committed cow pages";
#endif
if (!MM.commit_user_physical_pages(need_cow_pages))
return {};
// Create or replace the committed cow pages. When cloning a previously
// cloned vmobject, we want to essentially "fork", leaving us and the
// new clone with one set of shared committed cow pages, and the original
// one would keep the one it still has. This ensures that the original
// one and this one, as well as the clone have sufficient resources
// to cow all pages as needed
m_shared_committed_cow_pages = adopt(*new CommittedCowPages(need_cow_pages));
// Both original and clone become COW. So create a COW map for ourselves
// or reset all pages to be copied again if we were previously cloned
ensure_or_reset_cow_map();
return adopt(*new AnonymousVMObject(*this));
}
RefPtr<AnonymousVMObject> AnonymousVMObject::create_with_size(size_t size, AllocationStrategy commit)
{
if (commit == AllocationStrategy::Reserve || commit == AllocationStrategy::AllocateNow) {
// We need to attempt to commit before actually creating the object
if (!MM.commit_user_physical_pages(ceil_div(size, PAGE_SIZE)))
return {};
}
return adopt(*new AnonymousVMObject(size, commit));
}
NonnullRefPtr<AnonymousVMObject> AnonymousVMObject::create_with_physical_page(PhysicalPage& page)
{
return adopt(*new AnonymousVMObject(page));
}
RefPtr<AnonymousVMObject> AnonymousVMObject::create_for_physical_range(PhysicalAddress paddr, size_t size)
{
if (paddr.offset(size) < paddr) {
dbgln("Shenanigans! create_for_physical_range({}, {}) would wrap around", paddr, size);
return nullptr;
}
return adopt(*new AnonymousVMObject(paddr, size));
}
AnonymousVMObject::AnonymousVMObject(size_t size, AllocationStrategy strategy)
: VMObject(size)
, m_volatile_ranges_cache({ 0, page_count() })
, m_unused_committed_pages(strategy == AllocationStrategy::Reserve ? page_count() : 0)
{
if (strategy == AllocationStrategy::AllocateNow) {
// Allocate all pages right now. We know we can get all because we committed the amount needed
for (size_t i = 0; i < page_count(); ++i)
physical_pages()[i] = MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
} else {
auto& initial_page = (strategy == AllocationStrategy::Reserve) ? MM.lazy_committed_page() : MM.shared_zero_page();
for (size_t i = 0; i < page_count(); ++i)
physical_pages()[i] = initial_page;
}
}
AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, size_t size)
: VMObject(size)
, m_volatile_ranges_cache({ 0, page_count() })
{
ASSERT(paddr.page_base() == paddr);
for (size_t i = 0; i < page_count(); ++i)
physical_pages()[i] = PhysicalPage::create(paddr.offset(i * PAGE_SIZE), false, false);
}
AnonymousVMObject::AnonymousVMObject(PhysicalPage& page)
: VMObject(PAGE_SIZE)
, m_volatile_ranges_cache({ 0, page_count() })
{
physical_pages()[0] = page;
}
AnonymousVMObject::AnonymousVMObject(const AnonymousVMObject& other)
: VMObject(other)
, m_volatile_ranges_cache({ 0, page_count() }) // do *not* clone this
, m_volatile_ranges_cache_dirty(true) // do *not* clone this
, m_purgeable_ranges() // do *not* clone this
, m_unused_committed_pages(other.m_unused_committed_pages)
, m_cow_map() // do *not* clone this
, m_shared_committed_cow_pages(other.m_shared_committed_cow_pages) // share the pool
{
// We can't really "copy" a spinlock. But we're holding it. Clear in the clone
ASSERT(other.m_lock.is_locked());
m_lock.initialize();
// The clone also becomes COW
ensure_or_reset_cow_map();
if (m_unused_committed_pages > 0) {
// The original vmobject didn't use up all commited pages. When
// cloning (fork) we will overcommit. For this purpose we drop all
// lazy-commit references and replace them with shared zero pages.
for (size_t i = 0; i < page_count(); i++) {
auto& phys_page = m_physical_pages[i];
if (phys_page && phys_page->is_lazy_committed_page()) {
phys_page = MM.shared_zero_page();
if (--m_unused_committed_pages == 0)
break;
}
}
ASSERT(m_unused_committed_pages == 0);
}
}
AnonymousVMObject::~AnonymousVMObject()
{
// Return any unused committed pages
if (m_unused_committed_pages > 0)
MM.uncommit_user_physical_pages(m_unused_committed_pages);
}
int AnonymousVMObject::purge()
{
LOCKER(m_paging_lock);
return purge_impl();
}
int AnonymousVMObject::purge_with_interrupts_disabled(Badge<MemoryManager>)
{
ASSERT_INTERRUPTS_DISABLED();
if (m_paging_lock.is_locked())
return 0;
return purge_impl();
}
void AnonymousVMObject::set_was_purged(const VolatilePageRange& range)
{
ASSERT(m_lock.is_locked());
for (auto* purgeable_ranges : m_purgeable_ranges)
purgeable_ranges->set_was_purged(range);
}
int AnonymousVMObject::purge_impl()
{
int purged_page_count = 0;
ScopedSpinLock lock(m_lock);
for_each_volatile_range([&](const auto& range) {
int purged_in_range = 0;
auto range_end = range.base + range.count;
for (size_t i = range.base; i < range_end; i++) {
auto& phys_page = m_physical_pages[i];
if (phys_page && !phys_page->is_shared_zero_page()) {
ASSERT(!phys_page->is_lazy_committed_page());
++purged_in_range;
}
phys_page = MM.shared_zero_page();
}
if (purged_in_range > 0) {
purged_page_count += purged_in_range;
set_was_purged(range);
for_each_region([&](auto& region) {
if (&region.vmobject() == this) {
if (auto owner = region.get_owner()) {
// we need to hold a reference the process here (if there is one) as we may not own this region
klog() << "Purged " << purged_in_range << " pages from region " << region.name() << " owned by " << *owner << " at " << region.vaddr_from_page_index(range.base) << " - " << region.vaddr_from_page_index(range.base + range.count);
} else {
klog() << "Purged " << purged_in_range << " pages from region " << region.name() << " (no ownership) at " << region.vaddr_from_page_index(range.base) << " - " << region.vaddr_from_page_index(range.base + range.count);
}
region.remap_vmobject_page_range(range.base, range.count);
}
});
}
return IterationDecision::Continue;
});
return purged_page_count;
}
void AnonymousVMObject::register_purgeable_page_ranges(PurgeablePageRanges& purgeable_page_ranges)
{
ScopedSpinLock lock(m_lock);
purgeable_page_ranges.set_vmobject(this);
ASSERT(!m_purgeable_ranges.contains_slow(&purgeable_page_ranges));
m_purgeable_ranges.append(&purgeable_page_ranges);
}
void AnonymousVMObject::unregister_purgeable_page_ranges(PurgeablePageRanges& purgeable_page_ranges)
{
ScopedSpinLock lock(m_lock);
for (size_t i = 0; i < m_purgeable_ranges.size(); i++) {
if (m_purgeable_ranges[i] != &purgeable_page_ranges)
continue;
purgeable_page_ranges.set_vmobject(nullptr);
m_purgeable_ranges.remove(i);
return;
}
ASSERT_NOT_REACHED();
}
bool AnonymousVMObject::is_any_volatile() const
{
ScopedSpinLock lock(m_lock);
for (auto& volatile_ranges : m_purgeable_ranges) {
ScopedSpinLock lock(volatile_ranges->m_volatile_ranges_lock);
if (!volatile_ranges->is_empty())
return true;
}
return false;
}
size_t AnonymousVMObject::remove_lazy_commit_pages(const VolatilePageRange& range)
{
ASSERT(m_lock.is_locked());
size_t removed_count = 0;
auto range_end = range.base + range.count;
for (size_t i = range.base; i < range_end; i++) {
auto& phys_page = m_physical_pages[i];
if (phys_page && phys_page->is_lazy_committed_page()) {
phys_page = MM.shared_zero_page();
removed_count++;
ASSERT(m_unused_committed_pages > 0);
if (--m_unused_committed_pages == 0)
break;
}
}
return removed_count;
}
void AnonymousVMObject::update_volatile_cache()
{
ASSERT(m_lock.is_locked());
ASSERT(m_volatile_ranges_cache_dirty);
m_volatile_ranges_cache.clear();
for_each_nonvolatile_range([&](const VolatilePageRange& range) {
m_volatile_ranges_cache.add_unchecked(range);
return IterationDecision::Continue;
});
m_volatile_ranges_cache_dirty = false;
}
void AnonymousVMObject::range_made_volatile(const VolatilePageRange& range)
{
ASSERT(m_lock.is_locked());
if (m_unused_committed_pages == 0)
return;
// We need to check this range for any pages that are marked for
// lazy committed allocation and turn them into shared zero pages
// and also adjust the m_unused_committed_pages for each such page.
// Take into account all the other views as well.
size_t uncommit_page_count = 0;
for_each_volatile_range([&](const auto& r) {
auto intersected = range.intersected(r);
if (!intersected.is_empty()) {
uncommit_page_count += remove_lazy_commit_pages(intersected);
if (m_unused_committed_pages == 0)
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
// Return those committed pages back to the system
if (uncommit_page_count > 0) {
#ifdef COMMIT_DEBUG
klog() << "Uncommit " << uncommit_page_count << " lazy-commit pages from " << this;
#endif
MM.uncommit_user_physical_pages(uncommit_page_count);
}
m_volatile_ranges_cache_dirty = true;
}
void AnonymousVMObject::range_made_nonvolatile(const VolatilePageRange&)
{
ASSERT(m_lock.is_locked());
m_volatile_ranges_cache_dirty = true;
}
size_t AnonymousVMObject::count_needed_commit_pages_for_nonvolatile_range(const VolatilePageRange& range)
{
ASSERT(m_lock.is_locked());
ASSERT(!range.is_empty());
size_t need_commit_pages = 0;
auto range_end = range.base + range.count;
for (size_t page_index = range.base; page_index < range_end; page_index++) {
// COW pages are accounted for in m_shared_committed_cow_pages
if (m_cow_map && m_cow_map->get(page_index))
continue;
auto& phys_page = m_physical_pages[page_index];
if (phys_page && phys_page->is_shared_zero_page())
need_commit_pages++;
}
return need_commit_pages;
}
size_t AnonymousVMObject::mark_committed_pages_for_nonvolatile_range(const VolatilePageRange& range, size_t mark_total)
{
ASSERT(m_lock.is_locked());
ASSERT(!range.is_empty());
ASSERT(mark_total > 0);
size_t pages_updated = 0;
auto range_end = range.base + range.count;
for (size_t page_index = range.base; page_index < range_end; page_index++) {
// COW pages are accounted for in m_shared_committed_cow_pages
if (m_cow_map && m_cow_map->get(page_index))
continue;
auto& phys_page = m_physical_pages[page_index];
if (phys_page && phys_page->is_shared_zero_page()) {
phys_page = MM.lazy_committed_page();
if (++pages_updated == mark_total)
break;
}
}
#ifdef COMMIT_DEBUG
klog() << "Added " << pages_updated << " lazy-commit pages to " << this;
#endif
m_unused_committed_pages += pages_updated;
return pages_updated;
}
RefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(size_t page_index)
{
{
ScopedSpinLock lock(m_lock);
ASSERT(m_unused_committed_pages > 0);
// We should't have any committed page tags in volatile regions
ASSERT([&]() {
for (auto* purgeable_ranges : m_purgeable_ranges) {
if (purgeable_ranges->is_volatile(page_index))
return false;
}
return true;
}());
m_unused_committed_pages--;
}
return MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
}
Bitmap& AnonymousVMObject::ensure_cow_map()
{
if (!m_cow_map)
m_cow_map = make<Bitmap>(page_count(), true);
return *m_cow_map;
}
void AnonymousVMObject::ensure_or_reset_cow_map()
{
if (!m_cow_map)
m_cow_map = make<Bitmap>(page_count(), true);
else
m_cow_map->fill(true);
}
bool AnonymousVMObject::should_cow(size_t page_index, bool is_shared) const
{
auto& page = physical_pages()[page_index];
if (page && (page->is_shared_zero_page() || page->is_lazy_committed_page()))
return true;
if (is_shared)
return false;
return m_cow_map && m_cow_map->get(page_index);
}
void AnonymousVMObject::set_should_cow(size_t page_index, bool cow)
{
ensure_cow_map().set(page_index, cow);
}
size_t AnonymousVMObject::cow_pages() const
{
if (!m_cow_map)
return 0;
return m_cow_map->count_slow(true);
}
bool AnonymousVMObject::is_nonvolatile(size_t page_index)
{
if (m_volatile_ranges_cache_dirty)
update_volatile_cache();
return !m_volatile_ranges_cache.contains(page_index);
}
PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, VirtualAddress vaddr)
{
ASSERT_INTERRUPTS_DISABLED();
ScopedSpinLock lock(m_lock);
auto& page_slot = physical_pages()[page_index];
bool have_committed = m_shared_committed_cow_pages && is_nonvolatile(page_index);
if (page_slot->ref_count() == 1) {
#ifdef PAGE_FAULT_DEBUG
dbgln(" >> It's a COW page but nobody is sharing it anymore. Remap r/w");
#endif
set_should_cow(page_index, false);
if (have_committed) {
if (m_shared_committed_cow_pages->return_one())
m_shared_committed_cow_pages = nullptr;
}
return PageFaultResponse::Continue;
}
RefPtr<PhysicalPage> page;
if (have_committed) {
#ifdef PAGE_FAULT_DEBUG
dbgln(" >> It's a committed COW page and it's time to COW!");
#endif
page = m_shared_committed_cow_pages->allocate_one();
} else {
#ifdef PAGE_FAULT_DEBUG
dbgln(" >> It's a COW page and it's time to COW!");
#endif
page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
if (page.is_null()) {
klog() << "MM: handle_cow_fault was unable to allocate a physical page";
return PageFaultResponse::OutOfMemory;
}
}
u8* dest_ptr = MM.quickmap_page(*page);
#ifdef PAGE_FAULT_DEBUG
dbg() << " >> COW " << page->paddr() << " <- " << page_slot->paddr();
#endif
{
SmapDisabler disabler;
void* fault_at;
if (!safe_memcpy(dest_ptr, vaddr.as_ptr(), PAGE_SIZE, fault_at)) {
if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to write to page at {}",
page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
else if ((u8*)fault_at >= vaddr.as_ptr() && (u8*)fault_at <= vaddr.as_ptr() + PAGE_SIZE)
dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to read from page at {}",
page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
else
ASSERT_NOT_REACHED();
}
}
page_slot = move(page);
MM.unquickmap_page();
set_should_cow(page_index, false);
return PageFaultResponse::Continue;
}
}