ChatDev/chatdev/statistics.py

171 lines
7.0 KiB
Python
Raw Normal View History

2023-09-04 14:24:28 +03:00
import os
import numpy as np
def prompt_cost(model_type: str, num_prompt_tokens: float, num_completion_tokens: float):
input_cost_map = {
"gpt-3.5-turbo": 0.0015,
"gpt-3.5-turbo-16k": 0.003,
"gpt-3.5-turbo-0613": 0.0015,
"gpt-3.5-turbo-16k-0613": 0.003,
"gpt-4": 0.03,
"gpt-4-0613": 0.03,
"gpt-4-32k": 0.06,
}
output_cost_map = {
"gpt-3.5-turbo": 0.002,
"gpt-3.5-turbo-16k": 0.004,
"gpt-3.5-turbo-0613": 0.002,
"gpt-3.5-turbo-16k-0613": 0.004,
"gpt-4": 0.06,
"gpt-4-0613": 0.06,
"gpt-4-32k": 0.12,
}
if model_type not in input_cost_map or model_type not in output_cost_map:
return -1
return num_prompt_tokens * input_cost_map[model_type] / 1000.0 + num_completion_tokens * output_cost_map[model_type] / 1000.0
2023-09-04 14:24:28 +03:00
def get_info(dir, log_filepath):
print("dir:", dir)
model_type = ""
2023-09-04 14:24:28 +03:00
version_updates = -1
num_code_files = -1
num_png_files = -1
num_doc_files = -1
code_lines = -1
env_lines = -1
manual_lines = -1
duration = -1
num_utterance = -1
num_reflection = -1
num_prompt_tokens = -1
num_completion_tokens = -1
num_total_tokens = -1
if os.path.exists(dir):
filenames = os.listdir(dir)
# print(filenames)
num_code_files = len([filename for filename in filenames if filename.endswith(".py")])
# print("num_code_files:", num_code_files)
num_png_files = len([filename for filename in filenames if filename.endswith(".png")])
# print("num_png_files:", num_png_files)
num_doc_files = 0
for filename in filenames:
if filename.endswith(".py") or filename.endswith(".png"):
continue
if os.path.isfile(os.path.join(dir, filename)):
# print(filename)
num_doc_files += 1
# print("num_doc_files:", num_doc_files)
if "meta.txt" in filenames:
lines = open(os.path.join(dir, "meta.txt"), "r", encoding="utf8").read().split("\n")
version_updates = float([lines[i + 1] for i, line in enumerate(lines) if "Code_Version" in line][0]) + 1
else:
version_updates = -1
# print("version_updates: ", version_updates)
if "requirements.txt" in filenames:
lines = open(os.path.join(dir, "requirements.txt"), "r", encoding="utf8").read().split("\n")
env_lines = len([line for line in lines if len(line.strip()) > 0])
else:
env_lines = -1
# print("env_lines:", env_lines)
if "manual.md" in filenames:
lines = open(os.path.join(dir, "manual.md"), "r", encoding="utf8").read().split("\n")
manual_lines = len([line for line in lines if len(line.strip()) > 0])
else:
manual_lines = -1
# print("manual_lines:", manual_lines)
code_lines = 0
for filename in filenames:
if filename.endswith(".py"):
# print("......filename:", filename)
lines = open(os.path.join(dir, filename), "r", encoding="utf8").read().split("\n")
code_lines += len([line for line in lines if len(line.strip()) > 0])
# print("code_lines:", code_lines)
lines = open(log_filepath, "r", encoding="utf8").read().split("\n")
sublines = [line for line in lines if "| **model_type** |" in line]
if len(sublines) > 0:
model_type = sublines[0].split("| **model_type** | ModelType.")[-1].split(" | ")[0]
if model_type == "GPT_3_5_TURBO":
model_type = "gpt-3.5-turbo"
elif model_type == "GPT_4":
model_type = "gpt-4"
elif model_type == "GPT_4_32k":
model_type = "gpt-4-32k"
# print("model_type:", model_type)
2023-09-04 14:24:28 +03:00
lines = open(log_filepath, "r", encoding="utf8").read().split("\n")
start_lines = [line for line in lines if "**[Start Chat]**" in line]
chat_lines = [line for line in lines if "<->" in line]
num_utterance = len(start_lines) + len(chat_lines)
# print("num_utterance:", num_utterance)
lines = open(log_filepath, "r", encoding="utf8").read().split("\n")
sublines = [line for line in lines if line.startswith("prompt_tokens:")]
if len(sublines) > 0:
nums = [int(line.split(": ")[-1]) for line in sublines]
num_prompt_tokens = np.sum(nums)
# print("num_prompt_tokens:", num_prompt_tokens)
lines = open(log_filepath, "r", encoding="utf8").read().split("\n")
sublines = [line for line in lines if line.startswith("completion_tokens:")]
if len(sublines) > 0:
nums = [int(line.split(": ")[-1]) for line in sublines]
num_completion_tokens = np.sum(nums)
# print("num_completion_tokens:", num_completion_tokens)
lines = open(log_filepath, "r", encoding="utf8").read().split("\n")
sublines = [line for line in lines if line.startswith("total_tokens:")]
if len(sublines) > 0:
nums = [int(line.split(": ")[-1]) for line in sublines]
num_total_tokens = np.sum(nums)
# print("num_total_tokens:", num_total_tokens)
lines = open(log_filepath, "r", encoding="utf8").read().split("\n")
lines = open(log_filepath, "r", encoding="utf8").read().split("\n")
num_reflection = 0
for line in lines:
if "on : Reflection" in line:
num_reflection += 1
# print("num_reflection:", num_reflection)
cost = 0.0
if num_png_files != -1:
cost += num_png_files * 0.016
if prompt_cost(model_type, num_prompt_tokens, num_completion_tokens) != -1:
cost += prompt_cost(model_type, num_prompt_tokens, num_completion_tokens)
2023-09-04 14:24:28 +03:00
# info = f"🕑duration={duration}s 💰cost=${cost} 🔨version_updates={version_updates} 📃num_code_files={num_code_files} 🏞num_png_files={num_png_files} 📚num_doc_files={num_doc_files} 📃code_lines={code_lines} 📋env_lines={env_lines} 📒manual_lines={manual_lines} 🗣num_utterances={num_utterance} 🤔num_self_reflections={num_reflection} ❓num_prompt_tokens={num_prompt_tokens} ❗num_completion_tokens={num_completion_tokens} ⁉num_total_tokens={num_total_tokens}"
info = "\n\n💰**cost**=${:.6f}\n\n🔨**version_updates**={}\n\n📃**num_code_files**={}\n\n🏞**num_png_files**={}\n\n📚**num_doc_files**={}\n\n📃**code_lines**={}\n\n📋**env_lines**={}\n\n📒**manual_lines**={}\n\n🗣**num_utterances**={}\n\n🤔**num_self_reflections**={}\n\n❓**num_prompt_tokens**={}\n\n❗**num_completion_tokens**={}\n\n🌟**num_total_tokens**={}" \
.format(cost,
version_updates,
num_code_files,
num_png_files,
num_doc_files,
code_lines,
env_lines,
manual_lines,
num_utterance,
num_reflection,
num_prompt_tokens,
num_completion_tokens,
num_total_tokens)
return info