ChatDev/ecl/embedding.py

85 lines
3.1 KiB
Python
Raw Normal View History

2024-01-25 05:10:15 +03:00
import os
import openai
from openai import OpenAI
OPENAI_API_KEY = os.environ['OPENAI_API_KEY']
if 'BASE_URL' in os.environ:
BASE_URL = os.environ['BASE_URL']
else:
BASE_URL = None
import sys
import time
from tenacity import (
retry,
stop_after_attempt,
wait_random_exponential,
wait_fixed
)
from utils import log_and_print_online
sys.path.append(os.path.join(os.getcwd(),"ecl"))
class OpenAIEmbedding:
def __init__(self, **params):
self.code_prompt_tokens = 0
self.text_prompt_tokens = 0
self.code_total_tokens = 0
self.text_total_tokens = 0
self.prompt_tokens = 0
self.total_tokens = 0
@retry(wait=wait_random_exponential(min=2, max=5), stop=stop_after_attempt(10))
def get_text_embedding(self,text: str):
if BASE_URL:
client = openai.OpenAI(
api_key=OPENAI_API_KEY,
base_url=BASE_URL,
)
else:
client = openai.OpenAI(
api_key=OPENAI_API_KEY
)
if len(text)>8191:
text = text[:8190]
response = client.embeddings.create(input = text, model="text-embedding-ada-002").model_dump()
embedding = response['data'][0]['embedding']
log_and_print_online(
"Get text embedding from {}:\n**[OpenAI_Usage_Info Receive]**\nprompt_tokens: {}\ntotal_tokens: {}\n".format(
response["model"],response["usage"]["prompt_tokens"],response["usage"]["total_tokens"]))
self.text_prompt_tokens += response["usage"]["prompt_tokens"]
self.text_total_tokens += response["usage"]["total_tokens"]
self.prompt_tokens += response["usage"]["prompt_tokens"]
self.total_tokens += response["usage"]["total_tokens"]
return embedding
@retry(wait=wait_random_exponential(min=10, max=60), stop=stop_after_attempt(10))
def get_code_embedding(self,code: str):
if BASE_URL:
client = openai.OpenAI(
api_key=OPENAI_API_KEY,
base_url=BASE_URL,
)
else:
client = openai.OpenAI(
api_key=OPENAI_API_KEY
)
if len(code) == 0:
code = "#"
elif len(code) >8191:
code = code[0:8190]
response = client.embeddings.create(input=code, model="text-embedding-ada-002").model_dump()
embedding = response['data'][0]['embedding']
log_and_print_online(
"Get code embedding from {}:\n**[OpenAI_Usage_Info Receive]**\nprompt_tokens: {}\ntotal_tokens: {}\n".format(
response["model"],response["usage"]["prompt_tokens"],response["usage"]["total_tokens"]))
self.code_prompt_tokens += response["usage"]["prompt_tokens"]
self.code_total_tokens += response["usage"]["total_tokens"]
self.prompt_tokens += response["usage"]["prompt_tokens"]
self.total_tokens += response["usage"]["total_tokens"]
return embedding