mirror of
https://github.com/OpenBMB/ChatDev.git
synced 2024-11-07 18:40:13 +03:00
314 lines
11 KiB
Python
314 lines
11 KiB
Python
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
|
|
# Licensed under the Apache License, Version 2.0 (the “License”);
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an “AS IS” BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
from camel.messages import (
|
|
OpenAIAssistantMessage,
|
|
OpenAIChatMessage,
|
|
OpenAIMessage,
|
|
OpenAISystemMessage,
|
|
OpenAIUserMessage,
|
|
)
|
|
from camel.prompts import CodePrompt, TextPrompt
|
|
from camel.typing import ModelType, RoleType
|
|
|
|
try:
|
|
from openai.types.chat.chat_completion_message_tool_call import ChatCompletionMessageToolCall
|
|
from openai.types.chat.chat_completion_message import FunctionCall
|
|
|
|
openai_new_api = True # new openai api version
|
|
except ImportError:
|
|
openai_new_api = False # old openai api version
|
|
|
|
|
|
@dataclass
|
|
class BaseMessage:
|
|
r"""Base class for message objects used in CAMEL chat system.
|
|
|
|
Args:
|
|
role_name (str): The name of the user or assistant role.
|
|
role_type (RoleType): The type of role, either
|
|
:obj:`RoleType.ASSISTANT` or :obj:`RoleType.USER`.
|
|
meta_dict (Optional[Dict[str, str]]): Additional metadata dictionary
|
|
for the message.
|
|
role (str): The role of the message in OpenAI chat system, either
|
|
:obj:`"system"`, :obj:`"user"`, or :obj:`"assistant"`.
|
|
content (str): The content of the message.
|
|
"""
|
|
role_name: str
|
|
role_type: RoleType
|
|
meta_dict: Optional[Dict[str, str]]
|
|
role: str
|
|
content: str
|
|
if openai_new_api:
|
|
function_call: Optional[FunctionCall] = None
|
|
tool_calls: Optional[ChatCompletionMessageToolCall] = None
|
|
|
|
def __getattribute__(self, name: str) -> Any:
|
|
r"""Get attribute override to delegate string methods to the
|
|
:obj:`content`.
|
|
|
|
Args:
|
|
name (str): The name of the attribute.
|
|
|
|
Returns:
|
|
Any: The attribute value.
|
|
"""
|
|
delegate_methods = [
|
|
method for method in dir(str) if not method.startswith('_')
|
|
]
|
|
if name in delegate_methods:
|
|
content = super().__getattribute__('content')
|
|
if isinstance(content, str):
|
|
content_method = getattr(content, name, None)
|
|
if callable(content_method):
|
|
|
|
def modify_arg(arg: Any) -> Any:
|
|
r"""Modify the argument for delegate method.
|
|
|
|
Args:
|
|
arg (Any): The argument value.
|
|
|
|
Returns:
|
|
Any: The modified argument value.
|
|
"""
|
|
if isinstance(arg, BaseMessage):
|
|
return arg.content
|
|
elif isinstance(arg, (list, tuple)):
|
|
return type(arg)(modify_arg(item) for item in arg)
|
|
else:
|
|
return arg
|
|
|
|
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
|
r"""Wrapper function for delegate method.
|
|
|
|
Args:
|
|
*args (Any): Variable length argument list.
|
|
**kwargs (Any): Arbitrary keyword arguments.
|
|
|
|
Returns:
|
|
Any: The result of the delegate method.
|
|
"""
|
|
modified_args = [modify_arg(arg) for arg in args]
|
|
modified_kwargs = {
|
|
k: modify_arg(v)
|
|
for k, v in kwargs.items()
|
|
}
|
|
output = content_method(*modified_args,
|
|
**modified_kwargs)
|
|
return self._create_new_instance(output) if isinstance(
|
|
output, str) else output
|
|
|
|
return wrapper
|
|
|
|
return super().__getattribute__(name)
|
|
|
|
def _create_new_instance(self, content: str) -> "BaseMessage":
|
|
r"""Create a new instance of the :obj:`BaseMessage` with updated
|
|
content.
|
|
|
|
Args:
|
|
content (str): The new content value.
|
|
|
|
Returns:
|
|
BaseMessage: The new instance of :obj:`BaseMessage`.
|
|
"""
|
|
return self.__class__(role_name=self.role_name,
|
|
role_type=self.role_type,
|
|
meta_dict=self.meta_dict, role=self.role,
|
|
content=content)
|
|
|
|
def __add__(self, other: Any) -> Union["BaseMessage", Any]:
|
|
r"""Addition operator override for :obj:`BaseMessage`.
|
|
|
|
Args:
|
|
other (Any): The value to be added with.
|
|
|
|
Returns:
|
|
Union[BaseMessage, Any]: The result of the addition.
|
|
"""
|
|
if isinstance(other, BaseMessage):
|
|
combined_content = self.content.__add__(other.content)
|
|
elif isinstance(other, str):
|
|
combined_content = self.content.__add__(other)
|
|
else:
|
|
raise TypeError(
|
|
f"Unsupported operand type(s) for +: '{type(self)}' and "
|
|
f"'{type(other)}'")
|
|
return self._create_new_instance(combined_content)
|
|
|
|
def __mul__(self, other: Any) -> Union["BaseMessage", Any]:
|
|
r"""Multiplication operator override for :obj:`BaseMessage`.
|
|
|
|
Args:
|
|
other (Any): The value to be multiplied with.
|
|
|
|
Returns:
|
|
Union[BaseMessage, Any]: The result of the multiplication.
|
|
"""
|
|
if isinstance(other, int):
|
|
multiplied_content = self.content.__mul__(other)
|
|
return self._create_new_instance(multiplied_content)
|
|
else:
|
|
raise TypeError(
|
|
f"Unsupported operand type(s) for *: '{type(self)}' and "
|
|
f"'{type(other)}'")
|
|
|
|
def __len__(self) -> int:
|
|
r"""Length operator override for :obj:`BaseMessage`.
|
|
|
|
Returns:
|
|
int: The length of the content.
|
|
"""
|
|
return len(self.content)
|
|
|
|
def __contains__(self, item: str) -> bool:
|
|
r"""Contains operator override for :obj:`BaseMessage`.
|
|
|
|
Args:
|
|
item (str): The item to check for containment.
|
|
|
|
Returns:
|
|
bool: :obj:`True` if the item is contained in the content,
|
|
:obj:`False` otherwise.
|
|
"""
|
|
return item in self.content
|
|
|
|
def token_len(self, model: ModelType = ModelType.GPT_3_5_TURBO) -> int:
|
|
r"""Calculate the token length of the message for the specified model.
|
|
|
|
Args:
|
|
model (ModelType, optional): The model type to calculate the token
|
|
length. (default: :obj:`ModelType.GPT_3_5_TURBO`)
|
|
|
|
Returns:
|
|
int: The token length of the message.
|
|
"""
|
|
from camel.utils import num_tokens_from_messages
|
|
return num_tokens_from_messages([self.to_openai_chat_message()], model)
|
|
|
|
def extract_text_and_code_prompts(
|
|
self) -> Tuple[List[TextPrompt], List[CodePrompt]]:
|
|
r"""Extract text and code prompts from the message content.
|
|
|
|
Returns:
|
|
Tuple[List[TextPrompt], List[CodePrompt]]: A tuple containing a
|
|
list of text prompts and a list of code prompts extracted
|
|
from the content.
|
|
"""
|
|
text_prompts: List[TextPrompt] = []
|
|
code_prompts: List[CodePrompt] = []
|
|
|
|
lines = self.content.split("\n")
|
|
idx = 0
|
|
start_idx = 0
|
|
while idx < len(lines):
|
|
while idx < len(lines) and (
|
|
not lines[idx].lstrip().startswith("```")):
|
|
idx += 1
|
|
text = "\n".join(lines[start_idx:idx]).strip()
|
|
text_prompts.append(TextPrompt(text))
|
|
|
|
if idx >= len(lines):
|
|
break
|
|
|
|
code_type = lines[idx].strip()[3:].strip()
|
|
idx += 1
|
|
start_idx = idx
|
|
while not lines[idx].lstrip().startswith("```"):
|
|
idx += 1
|
|
code = "\n".join(lines[start_idx:idx]).strip()
|
|
code_prompts.append(CodePrompt(code, code_type=code_type))
|
|
|
|
idx += 1
|
|
start_idx = idx
|
|
|
|
return text_prompts, code_prompts
|
|
|
|
def to_openai_message(self, role: Optional[str] = None) -> OpenAIMessage:
|
|
r"""Converts the message to an :obj:`OpenAIMessage` object.
|
|
|
|
Args:
|
|
role (Optional[str]): The role of the message in OpenAI chat
|
|
system, either :obj:`"system"`, :obj:`"user"`, or
|
|
obj:`"assistant"`. (default: :obj:`None`)
|
|
|
|
Returns:
|
|
OpenAIMessage: The converted :obj:`OpenAIMessage` object.
|
|
"""
|
|
role = role or self.role
|
|
if role not in {"system", "user", "assistant"}:
|
|
raise ValueError(f"Unrecognized role: {role}")
|
|
return {"role": role, "content": self.content}
|
|
|
|
def to_openai_chat_message(
|
|
self,
|
|
role: Optional[str] = None,
|
|
) -> OpenAIChatMessage:
|
|
r"""Converts the message to an :obj:`OpenAIChatMessage` object.
|
|
|
|
Args:
|
|
role (Optional[str]): The role of the message in OpenAI chat
|
|
system, either :obj:`"user"`, or :obj:`"assistant"`.
|
|
(default: :obj:`None`)
|
|
|
|
Returns:
|
|
OpenAIChatMessage: The converted :obj:`OpenAIChatMessage` object.
|
|
"""
|
|
role = role or self.role
|
|
if role not in {"user", "assistant"}:
|
|
raise ValueError(f"Unrecognized role: {role}")
|
|
return {"role": role, "content": self.content}
|
|
|
|
def to_openai_system_message(self) -> OpenAISystemMessage:
|
|
r"""Converts the message to an :obj:`OpenAISystemMessage` object.
|
|
|
|
Returns:
|
|
OpenAISystemMessage: The converted :obj:`OpenAISystemMessage`
|
|
object.
|
|
"""
|
|
return {"role": "system", "content": self.content}
|
|
|
|
def to_openai_user_message(self) -> OpenAIUserMessage:
|
|
r"""Converts the message to an :obj:`OpenAIUserMessage` object.
|
|
|
|
Returns:
|
|
OpenAIUserMessage: The converted :obj:`OpenAIUserMessage` object.
|
|
"""
|
|
return {"role": "user", "content": self.content}
|
|
|
|
def to_openai_assistant_message(self) -> OpenAIAssistantMessage:
|
|
r"""Converts the message to an :obj:`OpenAIAssistantMessage` object.
|
|
|
|
Returns:
|
|
OpenAIAssistantMessage: The converted :obj:`OpenAIAssistantMessage`
|
|
object.
|
|
"""
|
|
return {"role": "assistant", "content": self.content}
|
|
|
|
def to_dict(self) -> Dict:
|
|
r"""Converts the message to a dictionary.
|
|
|
|
Returns:
|
|
dict: The converted dictionary.
|
|
"""
|
|
return {
|
|
"role_name": self.role_name,
|
|
"role_type": self.role_type.name,
|
|
**(self.meta_dict or {}),
|
|
"role": self.role,
|
|
"content": self.content,
|
|
}
|