merge function input self changes

This commit is contained in:
collin 2020-12-04 16:52:19 -05:00
commit 0f91630a9f
77 changed files with 740 additions and 435 deletions

View File

@ -31,6 +31,49 @@ jobs:
command: fmt
args: --all -- --check
clippy:
name: Clippy
runs-on: ubuntu-latest
env:
RUSTFLAGS: -Dwarnings
strategy:
matrix:
rust:
- stable
- nightly
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Install Rust (${{ matrix.rust }})
uses: actions-rs/toolchain@v1
with:
profile: minimal
toolchain: ${{ matrix.rust }}
override: true
components: clippy
- name: Check examples
uses: actions-rs/cargo@v1
with:
command: clippy
args: --examples --all
- name: Check examples with all features on stable
uses: actions-rs/cargo@v1
with:
command: clippy
args: --examples --all-features --all
if: matrix.rust == 'stable'
- name: Check benchmarks on nightly
uses: actions-rs/cargo@v1
with:
command: clippy
args: --all-features --examples --all --benches
if: matrix.rust == 'nightly'
test:
name: Test
runs-on: ubuntu-latest

26
Cargo.lock generated
View File

@ -1296,7 +1296,7 @@ checksum = "830d08ce1d1d941e6b30645f1a0eb5643013d835ce3779a5fc208261dbe10f55"
[[package]]
name = "leo-ast"
version = "1.0.4"
version = "1.0.6"
dependencies = [
"criterion",
"leo-grammar",
@ -1310,7 +1310,7 @@ dependencies = [
[[package]]
name = "leo-compiler"
version = "1.0.4"
version = "1.0.6"
dependencies = [
"bincode",
"hex",
@ -1345,7 +1345,7 @@ dependencies = [
[[package]]
name = "leo-core"
version = "1.0.4"
version = "1.0.6"
dependencies = [
"leo-ast",
"leo-gadgets",
@ -1361,7 +1361,7 @@ dependencies = [
[[package]]
name = "leo-gadgets"
version = "1.0.4"
version = "1.0.6"
dependencies = [
"criterion",
"rand",
@ -1374,7 +1374,7 @@ dependencies = [
[[package]]
name = "leo-grammar"
version = "1.0.4"
version = "1.0.6"
dependencies = [
"criterion",
"from-pest",
@ -1390,7 +1390,7 @@ dependencies = [
[[package]]
name = "leo-imports"
version = "1.0.4"
version = "1.0.6"
dependencies = [
"leo-ast",
"leo-grammar",
@ -1400,7 +1400,7 @@ dependencies = [
[[package]]
name = "leo-input"
version = "1.0.4"
version = "1.0.6"
dependencies = [
"from-pest",
"pest",
@ -1417,7 +1417,7 @@ dependencies = [
[[package]]
name = "leo-lang"
version = "1.0.4"
version = "1.0.6"
dependencies = [
"clap",
"colored",
@ -1458,11 +1458,11 @@ dependencies = [
[[package]]
name = "leo-linter"
version = "1.0.4"
version = "1.0.6"
[[package]]
name = "leo-package"
version = "1.0.4"
version = "1.0.6"
dependencies = [
"lazy_static",
"serde",
@ -1476,7 +1476,7 @@ dependencies = [
[[package]]
name = "leo-state"
version = "1.0.4"
version = "1.0.6"
dependencies = [
"leo-ast",
"leo-input",
@ -1495,7 +1495,7 @@ dependencies = [
[[package]]
name = "leo-symbol-table"
version = "1.0.4"
version = "1.0.6"
dependencies = [
"leo-ast",
"leo-core",
@ -1507,7 +1507,7 @@ dependencies = [
[[package]]
name = "leo-type-inference"
version = "1.0.4"
version = "1.0.6"
dependencies = [
"leo-ast",
"leo-grammar",

View File

@ -1,6 +1,6 @@
[package]
name = "leo-lang"
version = "1.0.4"
version = "1.0.6"
authors = [ "The Aleo Team <hello@aleo.org>" ]
description = "The Leo programming language"
homepage = "https://aleo.org"
@ -37,36 +37,36 @@ members = [
"package",
"state",
"symbol-table",
"type-inference",
"type-inference"
]
[dependencies.leo-ast]
path = "./ast"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-compiler]
path = "./compiler"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-gadgets]
path = "./gadgets"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-imports]
path = "./imports"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-input]
path = "./input"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-package]
path = "./package"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-state]
path = "./state"
version = "1.0.4"
version = "1.0.6"
[dependencies.snarkos-algorithms]
version = "1.1.3"

View File

@ -1,6 +1,6 @@
[package]
name = "leo-ast"
version = "1.0.4"
version = "1.0.6"
authors = [ "The Aleo Team <hello@aleo.org>" ]
description = "Core AST of the Leo programming language"
homepage = "https://aleo.org"
@ -28,11 +28,11 @@ harness = false
[dependencies.leo-grammar]
path = "../grammar"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-input]
path = "../input"
version = "1.0.4"
version = "1.0.6"
[dependencies.snarkos-errors]
version = "1.1.3"

View File

@ -20,64 +20,64 @@ use leo_grammar::Grammar;
use criterion::{criterion_group, criterion_main, Criterion};
use std::{path::Path, time::Duration};
fn ast<'ast>(ast: &Grammar<'ast>) -> Ast {
fn ast(ast: &Grammar) -> Ast {
Ast::new("leo_tree", &ast)
}
fn bench_big_if_else(c: &mut Criterion) {
let filepath = Path::new("./big_if_else.leo").to_path_buf();
let program_string = include_str!("./big_if_else.leo");
let ast = Grammar::new(&filepath, program_string).unwrap();
let grammar = Grammar::new(&filepath, program_string).unwrap();
c.bench_function("Ast::big_if_else", |b| b.iter(|| ast(&ast)));
c.bench_function("Ast::big_if_else", |b| b.iter(|| ast(&grammar)));
}
fn bench_big_ternary(c: &mut Criterion) {
let filepath = Path::new("./big_ternary.leo").to_path_buf();
let program_string = include_str!("./big_ternary.leo");
let ast = Grammar::new(&filepath, program_string).unwrap();
let grammar = Grammar::new(&filepath, program_string).unwrap();
c.bench_function("Ast::big_ternary", |b| b.iter(|| ast(&ast)));
c.bench_function("Ast::big_ternary", |b| b.iter(|| ast(&grammar)));
}
fn bench_big_circuit(c: &mut Criterion) {
let filepath = Path::new("./big_circuit.leo").to_path_buf();
let program_string = include_str!("./big_circuit.leo");
let ast = Grammar::new(&filepath, program_string).unwrap();
let grammar = Grammar::new(&filepath, program_string).unwrap();
c.bench_function("Ast::big_circuit", |b| b.iter(|| ast(&ast)));
c.bench_function("Ast::big_circuit", |b| b.iter(|| ast(&grammar)));
}
fn bench_long_expr(c: &mut Criterion) {
let filepath = Path::new("./long_expr.leo").to_path_buf();
let program_string = include_str!("./long_expr.leo");
let ast = Grammar::new(&filepath, program_string).unwrap();
let grammar = Grammar::new(&filepath, program_string).unwrap();
c.bench_function("Ast::long_expr", |b| b.iter(|| ast(&ast)));
c.bench_function("Ast::long_expr", |b| b.iter(|| ast(&grammar)));
}
fn bench_long_array(c: &mut Criterion) {
let filepath = Path::new("./long_array.leo").to_path_buf();
let program_string = include_str!("./long_array.leo");
let ast = Grammar::new(&filepath, program_string).unwrap();
let grammar = Grammar::new(&filepath, program_string).unwrap();
c.bench_function("Ast::long_array", |b| b.iter(|| ast(&ast)));
c.bench_function("Ast::long_array", |b| b.iter(|| ast(&grammar)));
}
fn bench_many_foos(c: &mut Criterion) {
let filepath = Path::new("./many_foos.leo").to_path_buf();
let program_string = include_str!("./many_foos.leo");
let ast = Grammar::new(&filepath, program_string).unwrap();
let grammar = Grammar::new(&filepath, program_string).unwrap();
c.bench_function("Ast::many_foos", |b| b.iter(|| ast(&ast)));
c.bench_function("Ast::many_foos", |b| b.iter(|| ast(&grammar)));
}
fn bench_many_assigns(c: &mut Criterion) {
let filepath = Path::new("./many_assigns.leo").to_path_buf();
let program_string = include_str!("./many_assigns.leo");
let ast = Grammar::new(&filepath, program_string).unwrap();
let grammar = Grammar::new(&filepath, program_string).unwrap();
c.bench_function("Ast::many_assigns", |b| b.iter(|| ast(&ast)));
c.bench_function("Ast::many_assigns", |b| b.iter(|| ast(&grammar)));
}
criterion_group!(

View File

@ -15,10 +15,9 @@
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{Function, Identifier, Type};
use leo_grammar::circuits::{
CircuitFunction as GrammarCircuitFunction,
CircuitMember as GrammarCircuitMember,
CircuitVariableDefinition as GrammarCircuitVariableDefinition,
use leo_grammar::{
circuits::{CircuitMember as GrammarCircuitMember, CircuitVariableDefinition as GrammarCircuitVariableDefinition},
functions::Function as GrammarFunction,
};
use serde::{Deserialize, Serialize};
@ -26,28 +25,24 @@ use std::fmt;
#[derive(Clone, PartialEq, Eq, Serialize, Deserialize)]
pub enum CircuitMember {
// (is_mutable, variable_name, variable_type)
CircuitVariable(bool, Identifier, Type),
// (is_static, function)
CircuitFunction(bool, Function),
// (variable_name, variable_type)
CircuitVariable(Identifier, Type),
// (function)
CircuitFunction(Function),
}
impl<'ast> From<GrammarCircuitVariableDefinition<'ast>> for CircuitMember {
fn from(circuit_value: GrammarCircuitVariableDefinition<'ast>) -> Self {
CircuitMember::CircuitVariable(
circuit_value.mutable.is_some(),
Identifier::from(circuit_value.identifier),
Type::from(circuit_value.type_),
)
}
}
impl<'ast> From<GrammarCircuitFunction<'ast>> for CircuitMember {
fn from(circuit_function: GrammarCircuitFunction<'ast>) -> Self {
CircuitMember::CircuitFunction(
circuit_function._static.is_some(),
Function::from(circuit_function.function),
)
impl<'ast> From<GrammarFunction<'ast>> for CircuitMember {
fn from(circuit_function: GrammarFunction<'ast>) -> Self {
CircuitMember::CircuitFunction(Function::from(circuit_function))
}
}
@ -63,16 +58,10 @@ impl<'ast> From<GrammarCircuitMember<'ast>> for CircuitMember {
impl fmt::Display for CircuitMember {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
CircuitMember::CircuitVariable(ref mutable, ref identifier, ref type_) => {
if *mutable {
write!(f, "mut ")?;
}
CircuitMember::CircuitVariable(ref identifier, ref type_) => {
write!(f, "{}: {}", identifier, type_)
}
CircuitMember::CircuitFunction(ref static_, ref function) => {
if *static_ {
write!(f, "static ")?;
}
CircuitMember::CircuitFunction(ref function) => {
write!(f, "{}", function)
}
}

View File

@ -14,12 +14,18 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::Span;
use crate::{InputKeyword, MutSelfKeyword, SelfKeyword, Span};
use leo_grammar::{
annotations::AnnotationArgument,
common::{Identifier as GrammarIdentifier, KeywordOrIdentifier, SelfKeyword, SelfKeywordOrIdentifier},
common::{
Identifier as GrammarIdentifier,
KeywordOrIdentifier,
MutSelfKeyword as GrammarMutSelfKeyword,
SelfKeyword as GrammarSelfKeyword,
SelfKeywordOrIdentifier,
},
expressions::CircuitName,
functions::InputKeyword,
functions::InputKeyword as GrammarInputKeyword,
imports::PackageName as GrammarPackageName,
types::SelfType,
};
@ -128,20 +134,56 @@ impl<'ast> From<SelfKeywordOrIdentifier<'ast>> for Identifier {
}
}
impl<'ast> From<SelfKeyword<'ast>> for Identifier {
fn from(self_: SelfKeyword<'ast>) -> Self {
impl<'ast> From<GrammarSelfKeyword<'ast>> for Identifier {
fn from(grammar: GrammarSelfKeyword<'ast>) -> Self {
Self {
name: self_.keyword,
span: Span::from(self_.span),
name: grammar.keyword,
span: Span::from(grammar.span),
}
}
}
impl<'ast> From<InputKeyword<'ast>> for Identifier {
fn from(input: InputKeyword<'ast>) -> Self {
impl From<SelfKeyword> for Identifier {
fn from(keyword: SelfKeyword) -> Self {
Self {
name: input.keyword,
span: Span::from(input.span),
name: keyword.to_string(),
span: keyword.span,
}
}
}
impl<'ast> From<GrammarMutSelfKeyword<'ast>> for Identifier {
fn from(grammar: GrammarMutSelfKeyword<'ast>) -> Self {
Self {
name: grammar.to_string(),
span: Span::from(grammar.span),
}
}
}
impl From<MutSelfKeyword> for Identifier {
fn from(keyword: MutSelfKeyword) -> Self {
Self {
name: keyword.to_string(),
span: keyword.span,
}
}
}
impl<'ast> From<GrammarInputKeyword<'ast>> for Identifier {
fn from(grammar: GrammarInputKeyword<'ast>) -> Self {
Self {
name: grammar.keyword,
span: Span::from(grammar.span),
}
}
}
impl From<InputKeyword> for Identifier {
fn from(keyword: InputKeyword) -> Self {
Self {
name: keyword.to_string(),
span: keyword.span,
}
}
}

View File

@ -0,0 +1,42 @@
// Copyright (C) 2019-2020 Aleo Systems Inc.
// This file is part of the Leo library.
// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::Span;
use leo_grammar::functions::InputKeyword as GrammarInputKeyword;
use serde::{Deserialize, Serialize};
use std::fmt;
/// The `input` keyword can view program register, record, and state values.
/// Values cannot be modified. The `input` keyword cannot be made mutable.
#[derive(Clone, Serialize, Deserialize)]
pub struct InputKeyword {
pub span: Span,
}
impl<'ast> From<GrammarInputKeyword<'ast>> for InputKeyword {
fn from(grammar: GrammarInputKeyword<'ast>) -> Self {
Self {
span: Span::from(grammar.span),
}
}
}
impl fmt::Display for InputKeyword {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "input")
}
}

View File

@ -26,12 +26,21 @@ pub use declare::*;
pub mod identifier;
pub use identifier::*;
pub mod input_keyword;
pub use input_keyword::*;
pub mod mut_self_keyword;
pub use mut_self_keyword::*;
pub mod positive_number;
pub use positive_number::*;
pub mod range_or_expression;
pub use range_or_expression::*;
pub mod self_keyword;
pub use self_keyword::*;
pub mod span;
pub use span::*;

View File

@ -14,14 +14,28 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{types::FunctionType, Attribute};
use crate::Span;
use leo_grammar::common::MutSelfKeyword as GrammarMutSelfKeyword;
use serde::{Deserialize, Serialize};
use std::fmt;
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub struct CircuitFunctionType {
/// The function signature of the circuit function
pub function: FunctionType,
/// The attributes of the circuit function
pub attribute: Option<Attribute>,
/// The `mut self` keyword can view and modify circuit values inside of a circuit function.
#[derive(Clone, Serialize, Deserialize)]
pub struct MutSelfKeyword {
pub span: Span,
}
impl<'ast> From<GrammarMutSelfKeyword<'ast>> for MutSelfKeyword {
fn from(grammar: GrammarMutSelfKeyword<'ast>) -> Self {
Self {
span: Span::from(grammar.span),
}
}
}
impl fmt::Display for MutSelfKeyword {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "mut self")
}
}

View File

@ -0,0 +1,42 @@
// Copyright (C) 2019-2020 Aleo Systems Inc.
// This file is part of the Leo library.
// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::Span;
use leo_grammar::common::SelfKeyword as GrammarSelfKeyword;
use serde::{Deserialize, Serialize};
use std::fmt;
/// The `self` keyword can view circuit values inside of a circuit function.
/// Circuit values cannot be modified. To modify values use the `mut self` [MutSelfKeyword].
#[derive(Clone, Serialize, Deserialize)]
pub struct SelfKeyword {
pub span: Span,
}
impl<'ast> From<GrammarSelfKeyword<'ast>> for SelfKeyword {
fn from(grammar: GrammarSelfKeyword<'ast>) -> Self {
Self {
span: Span::from(grammar.span),
}
}
}
impl fmt::Display for SelfKeyword {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "self")
}
}

View File

@ -60,6 +60,32 @@ impl Function {
&self.identifier.name
}
///
/// Returns `true` if the function has input `self` or `mut self`.
/// Returns `false` otherwise.
///
pub fn contains_self(&self) -> bool {
self.input.iter().any(|param| param.is_self())
}
///
/// Returns `true` if the function has input `mut self`.
/// Returns `false` otherwise.
///
pub fn contains_mut_self(&self) -> bool {
self.input.iter().any(|param| param.is_mut_self())
}
///
/// Returns a vector of [&FunctionInput] removing `self` and `mut self` inputs.
///
pub fn filter_self_inputs(&self) -> Vec<&FunctionInput> {
self.input
.iter()
.filter(|input| !input.is_self())
.collect::<Vec<&FunctionInput>>()
}
fn format(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "function {}", self.identifier)?;

View File

@ -14,29 +14,27 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{FunctionInputVariable, Identifier, Span};
use crate::{FunctionInputVariable, InputKeyword, MutSelfKeyword, SelfKeyword};
use leo_grammar::functions::input::Input as GrammarInput;
use serde::{Deserialize, Serialize};
use std::fmt;
#[derive(Clone, PartialEq, Eq, Serialize, Deserialize)]
/// Enumerates the possible inputs to a function.
#[derive(Clone, Serialize, Deserialize)]
pub enum FunctionInput {
InputKeyword(Identifier),
InputKeyword(InputKeyword),
SelfKeyword(SelfKeyword),
MutSelfKeyword(MutSelfKeyword),
Variable(FunctionInputVariable),
}
impl<'ast> From<GrammarInput<'ast>> for FunctionInput {
fn from(input: GrammarInput<'ast>) -> Self {
match input {
GrammarInput::InputKeyword(input_keyword) => {
let id = Identifier {
name: input_keyword.keyword,
span: Span::from(input_keyword.span),
};
FunctionInput::InputKeyword(id)
}
GrammarInput::InputKeyword(keyword) => FunctionInput::InputKeyword(InputKeyword::from(keyword)),
GrammarInput::SelfKeyword(keyword) => FunctionInput::SelfKeyword(SelfKeyword::from(keyword)),
GrammarInput::MutSelfKeyword(keyword) => FunctionInput::MutSelfKeyword(MutSelfKeyword::from(keyword)),
GrammarInput::FunctionInput(function_input) => {
FunctionInput::Variable(FunctionInputVariable::from(function_input))
}
@ -45,9 +43,37 @@ impl<'ast> From<GrammarInput<'ast>> for FunctionInput {
}
impl FunctionInput {
///
/// Returns `true` if the function input is the `self` or `mut self` keyword.
/// Returns `false` otherwise.
///
pub fn is_self(&self) -> bool {
match self {
FunctionInput::InputKeyword(_) => false,
FunctionInput::SelfKeyword(_) => true,
FunctionInput::MutSelfKeyword(_) => true,
FunctionInput::Variable(_) => false,
}
}
///
/// Returns `true` if the function input is the `mut self` keyword.
/// Returns `false` otherwise.
///
pub fn is_mut_self(&self) -> bool {
match self {
FunctionInput::InputKeyword(_) => false,
FunctionInput::SelfKeyword(_) => false,
FunctionInput::MutSelfKeyword(_) => true,
FunctionInput::Variable(_) => false,
}
}
fn format(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
FunctionInput::InputKeyword(id) => write!(f, "{}", id),
FunctionInput::InputKeyword(keyword) => write!(f, "{}", keyword),
FunctionInput::SelfKeyword(keyword) => write!(f, "{}", keyword),
FunctionInput::MutSelfKeyword(keyword) => write!(f, "{}", keyword),
FunctionInput::Variable(function_input) => write!(f, "{}", function_input),
}
}
@ -64,3 +90,18 @@ impl fmt::Debug for FunctionInput {
self.format(f)
}
}
impl PartialEq for FunctionInput {
/// Returns true if `self == other`. Does not compare spans.
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(FunctionInput::InputKeyword(_), FunctionInput::InputKeyword(_)) => true,
(FunctionInput::SelfKeyword(_), FunctionInput::SelfKeyword(_)) => true,
(FunctionInput::MutSelfKeyword(_), FunctionInput::MutSelfKeyword(_)) => true,
(FunctionInput::Variable(left), FunctionInput::Variable(right)) => left.eq(right),
_ => false,
}
}
}
impl Eq for FunctionInput {}

View File

@ -53,8 +53,8 @@ impl InputValue {
Ok(InputValue::Boolean(boolean))
}
fn from_number(integer_type: IntegerType, number: String) -> Result<Self, InputParserError> {
Ok(InputValue::Integer(integer_type, number))
fn from_number(integer_type: IntegerType, number: String) -> Self {
InputValue::Integer(integer_type, number)
}
fn from_group(group: InputGroupValue) -> Self {
@ -69,7 +69,7 @@ impl InputValue {
match data_type {
DataType::Address(_) => Err(InputParserError::implicit_type(data_type, implicit)),
DataType::Boolean(_) => Err(InputParserError::implicit_type(data_type, implicit)),
DataType::Integer(integer_type) => InputValue::from_number(integer_type, implicit.to_string()),
DataType::Integer(integer_type) => Ok(InputValue::from_number(integer_type, implicit.to_string())),
DataType::Group(_) => Err(InputParserError::implicit_group(implicit)),
DataType::Field(_) => Ok(InputValue::Field(implicit.to_string())),
}
@ -80,7 +80,7 @@ impl InputValue {
(DataType::Address(_), Value::Address(address)) => Ok(InputValue::from_address_value(address)),
(DataType::Boolean(_), Value::Boolean(boolean)) => InputValue::from_boolean(boolean),
(DataType::Integer(integer_type), Value::Integer(integer)) => {
InputValue::from_number(integer_type, integer.to_string())
Ok(InputValue::from_number(integer_type, integer.to_string()))
}
(DataType::Group(_), Value::Group(group)) => Ok(InputValue::from_group(group)),
(DataType::Field(_), Value::Field(field)) => Ok(InputValue::from_field(field)),

View File

@ -1,6 +1,6 @@
[package]
name = "leo-compiler"
version = "1.0.4"
version = "1.0.6"
authors = [ "The Aleo Team <hello@aleo.org>" ]
description = "Compiler of the Leo programming language"
homepage = "https://aleo.org"
@ -19,43 +19,43 @@ edition = "2018"
[dependencies.leo-ast]
path = "../ast"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-core]
path = "../core"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-gadgets]
path = "../gadgets"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-grammar]
path = "../grammar"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-imports]
path = "../imports"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-input]
path = "../input"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-package]
path = "../package"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-state]
path = "../state"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-symbol-table]
path = "../symbol-table"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-type-inference]
path = "../type-inference"
version = "1.0.4"
version = "1.0.6"
[dependencies.snarkos-curves]
version = "1.1.3"

View File

@ -206,7 +206,7 @@ impl ExpressionError {
}
pub fn undefined_identifier(identifier: Identifier) -> Self {
let message = format!("cannot find value `{}` in this scope", identifier.name);
let message = format!("Cannot find value `{}` in this scope", identifier.name);
Self::new_from_span(message, identifier.span)
}

View File

@ -82,12 +82,6 @@ impl FunctionError {
FunctionError::Error(FormattedError::new_from_span(message, span))
}
pub fn arguments_length(expected: usize, actual: usize, span: Span) -> Self {
let message = format!("function expected {} input variables, found {}", expected, actual);
Self::new_from_span(message, span)
}
pub fn invalid_array(actual: String, span: Span) -> Self {
let message = format!("Expected function input array, found `{}`", actual);

View File

@ -67,14 +67,17 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
match matched_member {
Some(member) => {
match &member.1 {
ConstrainedValue::Function(ref _circuit_identifier, ref _function) => {
// Pass circuit members into function call by value
for stored_member in members {
let circuit_scope = new_scope(&file_scope, &circuit_name.name);
let self_keyword = new_scope(&circuit_scope, SELF_KEYWORD);
let variable = new_scope(&self_keyword, &stored_member.0.name);
ConstrainedValue::Function(ref _circuit_identifier, ref function) => {
// Check for function input `self` or `mut self`.
if function.contains_self() {
// Pass circuit members into function call by value
for stored_member in members {
let circuit_scope = new_scope(&file_scope, &circuit_name.name);
let self_keyword = new_scope(&circuit_scope, SELF_KEYWORD);
let variable = new_scope(&self_keyword, &stored_member.0.name);
self.store(variable, stored_member.1.clone());
self.store(variable, stored_member.1.clone());
}
}
}
ConstrainedValue::Static(value) => {

View File

@ -58,7 +58,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
for member in circuit.members.into_iter() {
match member {
CircuitMember::CircuitVariable(is_mutable, identifier, type_) => {
CircuitMember::CircuitVariable(identifier, type_) => {
let matched_variable = members
.clone()
.into_iter()
@ -66,7 +66,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
match matched_variable {
Some(variable) => {
// Resolve and enforce circuit variable
let mut variable_value = self.enforce_expression(
let variable_value = self.enforce_expression(
cs,
file_scope,
function_scope,
@ -74,25 +74,16 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
variable.expression,
)?;
// Add mutability to circuit variable
if is_mutable {
variable_value = ConstrainedValue::Mutable(Box::new(variable_value))
}
resolved_members.push(ConstrainedCircuitMember(identifier, variable_value))
}
None => return Err(ExpressionError::expected_circuit_member(identifier.to_string(), span)),
}
}
CircuitMember::CircuitFunction(_static, function) => {
CircuitMember::CircuitFunction(function) => {
let identifier = function.identifier.clone();
let mut constrained_function_value =
let constrained_function_value =
ConstrainedValue::Function(Some(circuit_identifier.clone()), function);
if _static {
constrained_function_value = ConstrainedValue::Static(Box::new(constrained_function_value));
}
resolved_members.push(ConstrainedCircuitMember(identifier, constrained_function_value));
}
};

View File

@ -56,22 +56,13 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
// Find static circuit function
let matched_function = circuit.members.into_iter().find(|member| match member {
CircuitMember::CircuitFunction(_static, function) => function.identifier == circuit_member,
CircuitMember::CircuitFunction(function) => function.identifier == circuit_member,
_ => false,
});
// Return errors if no static function exists
let function = match matched_function {
Some(CircuitMember::CircuitFunction(_static, function)) => {
if _static {
function
} else {
return Err(ExpressionError::invalid_member_access(
function.identifier.to_string(),
span,
));
}
}
Some(CircuitMember::CircuitFunction(function)) => function,
_ => {
return Err(ExpressionError::undefined_member_access(
circuit.circuit_name.to_string(),

View File

@ -23,22 +23,13 @@ use crate::{
GroupType,
};
use leo_ast::{Expression, Function, FunctionInput, Span};
use leo_ast::{Expression, Function, FunctionInput};
use snarkos_models::{
curves::{Field, PrimeField},
gadgets::{r1cs::ConstraintSystem, utilities::boolean::Boolean},
};
pub fn check_arguments_length(expected: usize, actual: usize, span: &Span) -> Result<(), FunctionError> {
// Make sure we are given the correct number of arguments
if expected != actual {
Err(FunctionError::arguments_length(expected, actual, span.to_owned()))
} else {
Ok(())
}
}
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
pub(crate) fn enforce_function<CS: ConstraintSystem<F>>(
&mut self,
@ -51,17 +42,29 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
) -> Result<ConstrainedValue<F, G>, FunctionError> {
let function_name = new_scope(scope, function.get_name());
// Make sure we are given the correct number of input variables
check_arguments_length(function.input.len(), input.len(), &function.span)?;
// Store if function contains input `mut self`.
let mut_self = function.contains_mut_self();
// Store input values as new variables in resolved program
for (input_model, input_expression) in function.input.iter().zip(input.into_iter()) {
for (input_model, input_expression) in function.filter_self_inputs().iter().zip(input.into_iter()) {
let (name, value) = match input_model {
FunctionInput::InputKeyword(identifier) => {
let input_value =
FunctionInput::InputKeyword(keyword) => {
let value =
self.enforce_function_input(cs, scope, caller_scope, &function_name, None, input_expression)?;
(&identifier.name, input_value)
(keyword.to_string(), value)
}
FunctionInput::SelfKeyword(keyword) => {
let value =
self.enforce_function_input(cs, scope, caller_scope, &function_name, None, input_expression)?;
(keyword.to_string(), value)
}
FunctionInput::MutSelfKeyword(keyword) => {
let value =
self.enforce_function_input(cs, scope, caller_scope, &function_name, None, input_expression)?;
(keyword.to_string(), value)
}
FunctionInput::Variable(input_model) => {
// First evaluate input expression
@ -78,7 +81,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
input_value = ConstrainedValue::Mutable(Box::new(input_value))
}
(&input_model.identifier.name, input_value)
(input_model.identifier.name.clone(), input_value)
}
};
@ -100,6 +103,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
statement.clone(),
function.output.clone(),
declared_circuit_reference,
mut_self,
)?;
results.append(&mut result);

View File

@ -15,7 +15,7 @@
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{errors::FunctionError, ConstrainedCircuitMember, ConstrainedProgram, ConstrainedValue, GroupType};
use leo_ast::{Identifier, Input};
use leo_ast::{Identifier, Input, InputKeyword};
use snarkos_models::{
curves::{Field, PrimeField},
@ -31,26 +31,26 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
pub fn allocate_input_keyword<CS: ConstraintSystem<F>>(
&mut self,
cs: &mut CS,
identifier: Identifier,
keyword: InputKeyword,
input: &Input,
) -> Result<ConstrainedValue<F, G>, FunctionError> {
// Create an identifier for each input variable
let registers_name = Identifier {
name: REGISTERS_VARIABLE_NAME.to_string(),
span: identifier.span.clone(),
span: keyword.span.clone(),
};
let record_name = Identifier {
name: RECORD_VARIABLE_NAME.to_string(),
span: identifier.span.clone(),
span: keyword.span.clone(),
};
let state_name = Identifier {
name: STATE_VARIABLE_NAME.to_string(),
span: identifier.span.clone(),
span: keyword.span.clone(),
};
let state_leaf_name = Identifier {
name: STATE_LEAF_VARIABLE_NAME.to_string(),
span: identifier.span.clone(),
span: keyword.span.clone(),
};
// Fetch each input variable's definitions
@ -82,6 +82,6 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
// Return input variable keyword as circuit expression
Ok(ConstrainedValue::CircuitExpression(identifier, members))
Ok(ConstrainedValue::CircuitExpression(Identifier::from(keyword), members))
}
}

View File

@ -23,7 +23,7 @@ use crate::{
OutputBytes,
};
use leo_ast::{Expression, Function, FunctionInput, Input};
use leo_ast::{Expression, Function, FunctionInput, Identifier, Input};
use snarkos_models::{
curves::{Field, PrimeField},
@ -44,11 +44,16 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
// Iterate over main function input variables and allocate new values
let mut input_variables = Vec::with_capacity(function.input.len());
for input_model in function.input.clone().into_iter() {
let (identifier, value) = match input_model {
FunctionInput::InputKeyword(identifier) => {
let value = self.allocate_input_keyword(cs, identifier.clone(), &input)?;
let (input_id, value) = match input_model {
FunctionInput::InputKeyword(keyword) => {
let input_id = Identifier::new_with_span(&keyword.to_string(), &keyword.span);
let value = self.allocate_input_keyword(cs, keyword, &input)?;
(identifier, value)
(input_id, value)
}
FunctionInput::SelfKeyword(_) => unimplemented!("cannot access self keyword in main function"),
FunctionInput::MutSelfKeyword(_) => {
unimplemented!("cannot access mut self keyword in main function")
}
FunctionInput::Variable(input_model) => {
let name = input_model.identifier.name.clone();
@ -63,12 +68,12 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
};
// Store input as variable with {function_name}_{identifier_name}
let input_name = new_scope(&function_name, &identifier.name);
let input_name = new_scope(&function_name, &input_id.to_string());
// Store a new variable for every allocated main function input
self.store(input_name, value);
input_variables.push(Expression::Identifier(identifier));
input_variables.push(Expression::Identifier(input_id));
}
let span = function.span.clone();

View File

@ -43,6 +43,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
function_scope: &str,
declared_circuit_reference: &str,
indicator: &Boolean,
mut_self: bool,
assignee: Assignee,
expression: Expression,
span: &Span,
@ -87,7 +88,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
}
AssigneeAccess::Member(identifier) => {
// Mutate a circuit variable using the self keyword.
if assignee.identifier.is_self() {
if assignee.identifier.is_self() && mut_self {
let self_circuit_variable_name = new_scope(&assignee.identifier.name, &identifier.name);
let self_variable_name = new_scope(file_scope, &self_circuit_variable_name);
let value = self.mutate_circuit_variable(

View File

@ -59,9 +59,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
span.to_owned(),
))
}
ConstrainedValue::Mutable(value) => {
// Mutate the circuit variable's value in place
value => {
// Check that the new value type == old value type
new_value.resolve_type(Some(value.to_type(span)?), span)?;
@ -87,13 +85,6 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
Ok(selected_value)
}
_ => {
// Throw an error if we try to mutate an immutable circuit variable
Err(StatementError::immutable_circuit_variable(
variable_name.name,
span.to_owned(),
))
}
},
None => {
// Throw an error if the circuit variable does not exist in the circuit

View File

@ -25,6 +25,9 @@ use snarkos_models::{
};
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
/// Evaluates a branch of one or more statements and returns a result in
/// the given scope.
#[allow(clippy::too_many_arguments)]
pub fn evaluate_branch<CS: ConstraintSystem<F>>(
&mut self,
cs: &mut CS,
@ -33,6 +36,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
indicator: &Boolean,
statements: Vec<Statement>,
return_type: Option<Type>,
mut_self: bool,
) -> StatementResult<Vec<IndicatorAndConstrainedValue<F, G>>> {
let mut results = Vec::with_capacity(statements.len());
// Evaluate statements. Only allow a single return argument to be returned.
@ -45,6 +49,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
statement,
return_type.clone(),
"",
mut_self,
)?;
results.append(&mut value);

View File

@ -52,6 +52,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
indicator: &Boolean,
statement: ConditionalStatement,
return_type: Option<Type>,
mut_self: bool,
span: &Span,
) -> StatementResult<Vec<IndicatorAndConstrainedValue<F, G>>> {
let statement_string = statement.to_string();
@ -95,6 +96,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
&branch_1_indicator,
statement.statements,
return_type.clone(),
mut_self,
)?;
results.append(&mut branch_1_result);
@ -123,6 +125,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
&branch_2_indicator,
*nested,
return_type,
mut_self,
span,
)?,
ConditionalNestedOrEndStatement::End(statements) => self.evaluate_branch(
@ -132,6 +135,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
&branch_2_indicator,
statements,
return_type,
mut_self,
)?,
},
None => vec![],

View File

@ -48,6 +48,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
stop: Expression,
statements: Vec<Statement>,
return_type: Option<Type>,
mut_self: bool,
span: &Span,
) -> StatementResult<Vec<IndicatorAndConstrainedValue<F, G>>> {
let mut results = vec![];
@ -74,6 +75,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
indicator,
statements.clone(),
return_type.clone(),
mut_self,
)?;
results.append(&mut result);

View File

@ -45,6 +45,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
statement: Statement,
return_type: Option<Type>,
declared_circuit_reference: &str,
mut_self: bool,
) -> StatementResult<Vec<IndicatorAndConstrainedValue<F, G>>> {
let mut results = vec![];
@ -75,6 +76,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
function_scope,
declared_circuit_reference,
indicator,
mut_self,
variable,
expression,
&span,
@ -88,6 +90,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
indicator,
statement,
return_type,
mut_self,
&span,
)?;
@ -104,6 +107,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
start_stop.1,
statements,
return_type,
mut_self,
&span,
)?;

View File

@ -3,7 +3,7 @@ circuit Foo {
}
circuit Bar {
static function bar() {
function bar() {
let f = Foo { a: 0u32 };
}
}

View File

@ -1,5 +1,5 @@
circuit Foo {
static function echo(x: u32) -> u32 {
function echo(x: u32) -> u32 {
return x
}
}

View File

@ -1,18 +1,18 @@
circuit Foo {
x: u32,
function add_x(y: u32) -> u32 {
function add_x(self, y: u32) -> u32 {
return self.x + y
}
function call_add_x(y: u32) -> u32 {
function call_add_x(self, y: u32) -> u32 {
return self.add_x(y)
}
}
function main() {
let a = Foo { x: 1u32 };
let b = a.call_add_x(1u32);
let b = a.add_x(1u32);
console.assert(b == 2u32);
}

View File

@ -1,5 +1,5 @@
circuit Foo {
static function echo(x: u32) -> u32 {
function echo(x: u32) -> u32 {
return x
}
}

View File

@ -5,5 +5,5 @@ circuit Foo {
}
function main() {
let err = Foo::echo(1u32); // echo is a non-static function and must be accessed using `.`
let err = Foo::echo(1u32); // Correct, echo is a static function and must be accessed using `::`
}

View File

@ -1,11 +1,11 @@
circuit Foo {
static function qux() {}
function qux() {}
static function bar() {
function bar() {
Self::qux();
}
static function baz() {
function baz() {
Self::bar();
}
}

View File

@ -1,5 +1,5 @@
circuit Foo {
static function echo(x: u32) -> u32 {
function echo(x: u32) -> u32 {
return x
}
}

View File

@ -1,7 +1,7 @@
circuit Foo {
foo: u32,
static function bar() -> u32 {
function bar() -> u32 {
return 1u32
}
}

View File

@ -119,9 +119,9 @@ fn test_member_static_function_nested() {
#[test]
fn test_member_static_function_invalid() {
let bytes = include_bytes!("member_static_function_invalid.leo");
let error = parse_program(bytes).err().unwrap();
let program = parse_program(bytes).unwrap();
expect_type_inference_error(error)
assert_satisfied(program)
}
#[test]
@ -219,9 +219,9 @@ fn test_self_member_pass() {
#[test]
fn test_self_member_invalid() {
let bytes = include_bytes!("self_member_invalid.leo");
let program = parse_program(bytes).unwrap();
let error = parse_program(bytes).err().unwrap();
let _err = expect_compiler_error(program);
expect_type_inference_error(error);
}
#[test]

View File

@ -3,7 +3,7 @@ circuit Foo {
function bar() {}
function set_a(new: u8) {
function set_a(mut self, new: u8) {
self.bar = new;
}
}

View File

@ -1,9 +1,9 @@
circuit Foo {
a: u8,
static function bar() {}
function bar() {}
function set_a(new: u8) {
function set_a(mut self, new: u8) {
self.bar = new;
}
}

View File

@ -1,7 +1,7 @@
circuit Foo {
mut a: u8,
a: u8,
function set_a(new: u8) {
function set_a(mut self, new: u8) {
self.a = new;
console.assert(self.a == new);
}

View File

@ -1,7 +1,7 @@
circuit Foo {
a: u8,
function set_a(new: u8) {
function set_a(self, new: u8) {
self.a = new;
}
}

View File

@ -1,5 +1,5 @@
circuit Foo {
static function bar() {}
function bar() {}
}
function main() {

View File

@ -1,5 +1,5 @@
circuit Foo {
mut a: u8,
a: u8,
}
function main() {

View File

@ -3,7 +3,7 @@ circuit Foo {
}
function main() {
let mut f = Foo { a: 0u8 };
let f = Foo { a: 0u8 };
f.a = 1u8;
}

View File

@ -1,11 +1,11 @@
circuit PedersenHash {
parameters: [u32; 512]
static function new(parameters: [u32; 512]) -> Self {
function new(parameters: [u32; 512]) -> Self {
return Self { parameters: parameters }
}
function hash(bits: [bool; 512]) -> u32 {
function hash(self, bits: [bool; 512]) -> u32 {
let mut digest: u32 = 0;
for i in 0..512 {
let base = if bits[i] ? self.parameters[i] : 0u32;

View File

@ -1,7 +1,7 @@
circuit Foo {
f: u32,
function bar() -> u32 {
function bar(self) -> u32 {
return self.f
}
}

View File

@ -1,6 +1,6 @@
// Adding the `mut` keyword makes a circuit variable mutable.
circuit Foo {
static function bar() {}
function bar() {}
}
function main() {

View File

@ -1,6 +1,6 @@
// Adding the `mut` keyword makes a circuit variable mutable.
circuit Foo {
mut x: u32
x: u32
}
function main() {

View File

@ -78,7 +78,7 @@ fn test_circuit_mut() {
let bytes = include_bytes!("circuit_mut.leo");
let program = parse_program(bytes).unwrap();
expect_compiler_error(program);
assert_satisfied(program);
}
#[test]

View File

@ -53,7 +53,7 @@ fn test_undefined() {
" 2 | return a",
" | ^",
" |",
" = cannot find value `a` in this scope",
" = Cannot find value `a` in this scope",
]
.join("\n")
);

View File

@ -1,6 +1,6 @@
[package]
name = "leo-core"
version = "1.0.4"
version = "1.0.6"
authors = [ "The Aleo Team <hello@aleo.org>" ]
description = "Core package dependencies of the Leo programming language"
homepage = "https://aleo.org"
@ -19,11 +19,11 @@ edition = "2018"
[dependencies.leo-ast]
path = "../ast"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-gadgets]
path = "../gadgets"
version = "1.0.4"
version = "1.0.6"
[dependencies.snarkos-errors]
version = "1.1.3"

View File

@ -61,72 +61,69 @@ impl CoreCircuit for Blake2sCircuit {
fn ast(circuit_name: Identifier, span: Span) -> Circuit {
Circuit {
circuit_name,
members: vec![CircuitMember::CircuitFunction(
true, // static function
Function {
identifier: Identifier {
name: "hash".to_owned(),
members: vec![CircuitMember::CircuitFunction(Function {
identifier: Identifier {
name: "hash".to_owned(),
span: span.clone(),
},
input: vec![
FunctionInput::Variable(FunctionInputVariable {
identifier: Identifier {
name: "seed".to_owned(),
span: span.clone(),
},
mutable: false,
type_: Type::Array(
Box::new(Type::IntegerType(IntegerType::U8)),
ArrayDimensions(vec![PositiveNumber {
value: 32usize.to_string(),
span: span.clone(),
}]),
),
span: span.clone(),
},
input: vec![
FunctionInput::Variable(FunctionInputVariable {
identifier: Identifier {
}),
FunctionInput::Variable(FunctionInputVariable {
identifier: Identifier {
name: "message".to_owned(),
span: span.clone(),
},
mutable: false,
type_: Type::Array(
Box::new(Type::IntegerType(IntegerType::U8)),
ArrayDimensions(vec![PositiveNumber {
value: 32usize.to_string(),
span: span.clone(),
}]),
),
span: span.clone(),
}),
],
output: Some(Type::Array(
Box::new(Type::IntegerType(IntegerType::U8)),
ArrayDimensions(vec![PositiveNumber {
value: 32usize.to_string(),
span: span.clone(),
}]),
)),
statements: vec![Statement::Return(
Expression::CoreFunctionCall(
Self::name(),
vec![
Expression::Identifier(Identifier {
name: "seed".to_owned(),
span: span.clone(),
},
mutable: false,
type_: Type::Array(
Box::new(Type::IntegerType(IntegerType::U8)),
ArrayDimensions(vec![PositiveNumber {
value: 32usize.to_string(),
span: span.clone(),
}]),
),
span: span.clone(),
}),
FunctionInput::Variable(FunctionInputVariable {
identifier: Identifier {
}),
Expression::Identifier(Identifier {
name: "message".to_owned(),
span: span.clone(),
},
mutable: false,
type_: Type::Array(
Box::new(Type::IntegerType(IntegerType::U8)),
ArrayDimensions(vec![PositiveNumber {
value: 32usize.to_string(),
span: span.clone(),
}]),
),
span: span.clone(),
}),
],
output: Some(Type::Array(
Box::new(Type::IntegerType(IntegerType::U8)),
ArrayDimensions(vec![PositiveNumber {
value: 32usize.to_string(),
span: span.clone(),
}]),
)),
statements: vec![Statement::Return(
Expression::CoreFunctionCall(
Self::name(),
vec![
Expression::Identifier(Identifier {
name: "seed".to_owned(),
span: span.clone(),
}),
Expression::Identifier(Identifier {
name: "message".to_owned(),
span: span.clone(),
}),
],
span.clone(),
),
}),
],
span.clone(),
)],
span,
},
)],
),
span.clone(),
)],
span,
})],
}
}

View File

@ -1,6 +1,6 @@
[package]
name = "leo-gadgets"
version = "1.0.4"
version = "1.0.6"
authors = [ "The Aleo Team <hello@aleo.org>" ]
description = "Gadgets of the Leo programming language"
homepage = "https://aleo.org"

View File

@ -1,6 +1,6 @@
[package]
name = "leo-grammar"
version = "1.0.4"
version = "1.0.6"
authors = [ "The Aleo Team <hello@aleo.org>" ]
description = "AST generated by pest from the Leo grammar rules"
homepage = "https://aleo.org"

View File

@ -14,10 +14,7 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{
ast::Rule,
circuits::{CircuitFunction, CircuitVariableDefinition},
};
use crate::{ast::Rule, circuits::CircuitVariableDefinition, functions::Function};
use pest_ast::FromPest;
use serde::Serialize;
@ -26,5 +23,5 @@ use serde::Serialize;
#[pest_ast(rule(Rule::circuit_member))]
pub enum CircuitMember<'ast> {
CircuitVariableDefinition(CircuitVariableDefinition<'ast>),
CircuitFunction(CircuitFunction<'ast>),
CircuitFunction(Function<'ast>),
}

View File

@ -14,12 +14,7 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{
ast::Rule,
common::{Identifier, Mutable},
types::Type,
SpanDef,
};
use crate::{ast::Rule, common::Identifier, types::Type, SpanDef};
use pest::Span;
use pest_ast::FromPest;
@ -28,7 +23,6 @@ use serde::Serialize;
#[derive(Clone, Debug, FromPest, PartialEq, Serialize)]
#[pest_ast(rule(Rule::circuit_variable_definition))]
pub struct CircuitVariableDefinition<'ast> {
pub mutable: Option<Mutable>,
pub identifier: Identifier<'ast>,
pub type_: Type<'ast>,
#[pest_ast(outer())]

View File

@ -23,8 +23,5 @@ pub use circuit_variable::*;
pub mod circuit_variable_definition;
pub use circuit_variable_definition::*;
pub mod circuit_function;
pub use circuit_function::*;
pub mod circuit_member;
pub use circuit_member::*;

View File

@ -35,6 +35,9 @@ pub use line_end::*;
pub mod mutable;
pub use mutable::*;
pub mod mut_self_keyword;
pub use mut_self_keyword::*;
pub mod range;
pub use range::*;

View File

@ -14,18 +14,29 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{ast::Rule, common::Static, functions::Function, SpanDef};
use crate::{
ast::Rule,
common::{Mutable, SelfKeyword},
SpanDef,
};
use pest::Span;
use pest_ast::FromPest;
use serde::Serialize;
use std::fmt;
#[derive(Clone, Debug, FromPest, PartialEq, Serialize)]
#[pest_ast(rule(Rule::circuit_function))]
pub struct CircuitFunction<'ast> {
pub _static: Option<Static>,
pub function: Function<'ast>,
#[pest_ast(rule(Rule::mut_self_keyword))]
pub struct MutSelfKeyword<'ast> {
pub mutable: Mutable,
pub self_keyword: SelfKeyword<'ast>,
#[pest_ast(outer())]
#[serde(with = "SpanDef")]
pub span: Span<'ast>,
}
impl<'ast> fmt::Display for MutSelfKeyword<'ast> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "mut {}", self.self_keyword)
}
}

View File

@ -16,6 +16,7 @@
use crate::{
ast::Rule,
common::{MutSelfKeyword, SelfKeyword},
functions::{FunctionInput, InputKeyword},
};
@ -26,5 +27,7 @@ use serde::Serialize;
#[pest_ast(rule(Rule::input))]
pub enum Input<'ast> {
InputKeyword(InputKeyword<'ast>),
SelfKeyword(SelfKeyword<'ast>),
MutSelfKeyword(MutSelfKeyword<'ast>),
FunctionInput(FunctionInput<'ast>),
}

View File

@ -47,6 +47,9 @@ protected_name = {
// Declared in common/self_keyword.rs
self_keyword = { "self" }
// Declared in common/mut_self_keyword.rs
mut_self_keyword = { mutable ~ self_keyword }
// Declared in common/self_keyword_or_identifier.rs
self_keyword_or_identifier = {
self_keyword
@ -319,13 +322,10 @@ circuit = { "circuit " ~ identifier ~ "{" ~ NEWLINE* ~ circuit_member* ~ NEWLINE
circuit_variable = { identifier ~ ":" ~ expression }
// Declared in circuits/circuit_variable_definition.rs
circuit_variable_definition = { mutable? ~ identifier ~ ":" ~ type_ ~ ","?}
// Declared in circuits/circuit_function.rs
circuit_function = { static_? ~ function }
circuit_variable_definition = { identifier ~ ":" ~ type_ ~ ","?}
// Declared in circuits/circuit_member.rs
circuit_member = { circuit_function | circuit_variable_definition ~ NEWLINE*}
circuit_member = { function | circuit_variable_definition ~ NEWLINE*}
/// Conditionals
@ -429,6 +429,8 @@ input_keyword = { "input" }
// Declared in functions/input/input.rs
input = {
input_keyword
| self_keyword
| mut_self_keyword
| function_input
}
input_tuple = _{ "(" ~ NEWLINE* ~ (input ~ ("," ~ NEWLINE* ~ input)* ~ ","?)? ~ NEWLINE* ~ ")"}

View File

@ -1,29 +1,29 @@
[package]
name = "leo-imports"
version = "1.0.4"
authors = [ "The Aleo Team <hello@aleo.org>"]
version = "1.0.6"
authors = [ "The Aleo Team <hello@aleo.org>" ]
description = "Import parser for Leo program package dependencies"
homepage = "https://aleo.org"
repository = "https://github.com/AleoHQ/leo"
keywords = [
"aleo",
"cryptography",
"leo",
"programming-language",
"zero-knowledge"
"aleo",
"cryptography",
"leo",
"programming-language",
"zero-knowledge"
]
categories = [ "cryptography::cryptocurrencies", "web-programming" ]
include = ["Cargo.toml", "src", "README.md", "LICENSE.md" ]
include = [ "Cargo.toml", "src", "README.md", "LICENSE.md" ]
license = "GPL-3.0"
edition = "2018"
[dependencies.leo-ast]
path = "../ast"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-grammar]
path = "../grammar"
version = "1.0.4"
version = "1.0.6"
[dependencies.thiserror]
version = "1.0"

View File

@ -1,6 +1,6 @@
[package]
name = "leo-input"
version = "1.0.4"
version = "1.0.6"
authors = [ "The Aleo Team <hello@aleo.org>" ]
description = "Input parser of the Leo programming language"
homepage = "https://aleo.org"

View File

@ -1 +1 @@
v1.0.4
v1.0.6

View File

@ -2,7 +2,7 @@ dependencies = { }
[package]
name = "leo-linter"
version = "1.0.4"
version = "1.0.6"
authors = [ "The Aleo Team <hello@aleo.org>" ]
description = "Linter of the Leo programming language"
homepage = "https://aleo.org"

View File

@ -1,6 +1,6 @@
[package]
name = "leo-package"
version = "1.0.4"
version = "1.0.6"
authors = [ "The Aleo Team <hello@aleo.org>" ]
description = "Package parser of the Leo programming language"
homepage = "https://aleo.org"

View File

@ -1,6 +1,6 @@
[package]
name = "leo-state"
version = "1.0.4"
version = "1.0.6"
authors = [ "The Aleo Team <hello@aleo.org>" ]
description = "State parser of the Leo programming language"
homepage = "https://aleo.org"
@ -19,11 +19,11 @@ edition = "2018"
[dependencies.leo-input]
path = "../input"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-ast]
path = "../ast"
version = "1.0.4"
version = "1.0.6"
[dependencies.snarkos-algorithms]
version = "1.1.3"

View File

@ -1,16 +1,16 @@
[package]
name = "leo-symbol-table"
version = "1.0.4"
version = "1.0.6"
authors = [ "The Aleo Team <hello@aleo.org>" ]
description = "Stores user-defined variables during type resolution"
homepage = "https://aleo.org"
repository = "https://github.com/AleoHQ/leo"
keywords = [
"aleo",
"cryptography",
"leo",
"programming-language",
"zero-knowledge"
"aleo",
"cryptography",
"leo",
"programming-language",
"zero-knowledge"
]
categories = [ "cryptography::croptocurrencies", "web-programming" ]
include = [ "Cargo.toml", "src", "README.md", "LICENSE.md" ]
@ -19,19 +19,19 @@ edition = "2018"
[dependencies.leo-ast]
path = "../ast"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-core]
path = "../core"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-grammar]
path = "../grammar"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-imports]
path = "../imports"
version = "1.0.4"
version = "1.0.6"
[dependencies.serde]
version = "1.0"

View File

@ -14,14 +14,7 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{
types::circuits::{CircuitFunctionType, CircuitVariableType},
Attribute,
FunctionType,
SymbolTable,
Type,
TypeError,
};
use crate::{types::circuits::CircuitVariableType, FunctionType, SymbolTable, Type, TypeError};
use leo_ast::{Circuit, CircuitMember, Identifier, InputValue, Parameter, Span};
use serde::{Deserialize, Serialize};
@ -43,7 +36,7 @@ pub struct CircuitType {
pub variables: Vec<CircuitVariableType>,
/// The circuit functions.
pub functions: Vec<CircuitFunctionType>,
pub functions: Vec<FunctionType>,
}
impl CircuitType {
@ -61,7 +54,7 @@ impl CircuitType {
// Resolve the type of every circuit member.
for member in unresolved.members {
match member {
CircuitMember::CircuitVariable(is_mutable, variable_identifier, type_) => {
CircuitMember::CircuitVariable(variable_identifier, type_) => {
// Resolve the type of the circuit member variable.
let type_ = Type::new_from_circuit(
table,
@ -70,34 +63,22 @@ impl CircuitType {
circuit_identifier.span.clone(),
)?;
// Check if the circuit member variable is mutable.
let attribute = if is_mutable { Some(Attribute::Mutable) } else { None };
// Create a new circuit variable type.
let variable = CircuitVariableType {
identifier: variable_identifier,
type_,
attribute,
attribute: None,
};
// Store the circuit variable type.
variables.push(variable);
}
CircuitMember::CircuitFunction(is_static, function) => {
CircuitMember::CircuitFunction(function) => {
// Resolve the type of the circuit member function.
let function_type = FunctionType::from_circuit(table, circuit_identifier.clone(), function)?;
// Check if the circuit member function is static.
let attribute = if is_static { Some(Attribute::Static) } else { None };
// Create a new circuit function type.
let function = CircuitFunctionType {
function: function_type,
attribute,
};
// Store the circuit function type.
functions.push(function);
functions.push(function_type);
}
}
}
@ -113,10 +94,10 @@ impl CircuitType {
///
/// Returns the function type of a circuit member given an identifier.
///
pub fn member_function_type(&self, identifier: &Identifier) -> Option<&CircuitFunctionType> {
pub fn member_function_type(&self, identifier: &Identifier) -> Option<&FunctionType> {
self.functions
.iter()
.find(|function| function.function.identifier.eq(identifier))
.find(|function| function.identifier.eq(identifier))
}
///
@ -139,7 +120,7 @@ impl CircuitType {
let matched_function = self.member_function_type(identifier);
match matched_function {
Some(function) => Ok(Type::Function(function.function.identifier.to_owned())),
Some(function) => Ok(Type::Function(function.identifier.to_owned())),
None => Err(TypeError::undefined_circuit_member(identifier.clone())),
}
}

View File

@ -17,8 +17,5 @@
pub mod circuit;
pub use self::circuit::*;
pub mod circuit_function;
pub use self::circuit_function::*;
pub mod circuit_variable;
pub use self::circuit_variable::*;

View File

@ -119,6 +119,34 @@ impl FunctionType {
Ok(())
}
///
/// Returns the number of input variables to the function.
/// The `self` and `mut self` keywords are not counted as input variables.
///
pub fn num_inputs(&self) -> usize {
self.inputs
.iter()
.fold(0, |acc, function_input| acc + function_input.count())
}
///
/// Returns `true` if the input `self` or `mut self` is present.
/// Returns `false` otherwise.
///
pub fn contains_self(&self) -> bool {
self.inputs.iter().any(|param| param.is_self())
}
///
/// Returns a vector of [&FunctionInputType] removing `self` and `mut self` inputs.
///
pub fn filter_self_inputs(&self) -> Vec<&FunctionInputType> {
self.inputs
.iter()
.filter(|input| !input.is_self())
.collect::<Vec<&FunctionInputType>>()
}
}
impl PartialEq for FunctionType {

View File

@ -22,6 +22,8 @@ use serde::{Deserialize, Serialize};
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum FunctionInputType {
InputKeyword(Identifier),
SelfKeyword(Identifier),
MutSelfKeyword(Identifier),
Variable(FunctionInputVariableType),
}
@ -32,6 +34,8 @@ impl FunctionInputType {
pub fn identifier(&self) -> &Identifier {
match self {
FunctionInputType::InputKeyword(identifier) => identifier,
FunctionInputType::SelfKeyword(identifier) => identifier,
FunctionInputType::MutSelfKeyword(identifier) => identifier,
FunctionInputType::Variable(variable) => &variable.identifier,
}
}
@ -42,6 +46,8 @@ impl FunctionInputType {
pub fn type_(&self) -> Type {
match self {
FunctionInputType::InputKeyword(identifier) => Type::Circuit(identifier.to_owned()),
FunctionInputType::SelfKeyword(identifier) => Type::Circuit(identifier.to_owned()),
FunctionInputType::MutSelfKeyword(identifier) => Type::Circuit(identifier.to_owned()),
FunctionInputType::Variable(variable) => variable.type_.to_owned(),
}
}
@ -52,10 +58,34 @@ impl FunctionInputType {
pub fn span(&self) -> &Span {
match self {
FunctionInputType::InputKeyword(identifier) => &identifier.span,
FunctionInputType::SelfKeyword(identifier) => &identifier.span,
FunctionInputType::MutSelfKeyword(identifier) => &identifier.span,
FunctionInputType::Variable(variable) => &variable.span,
}
}
///
/// Returns `true` if input `self` or `mut self` is present.
/// Returns `false` otherwise.
///
pub fn is_self(&self) -> bool {
match self {
FunctionInputType::InputKeyword(_) => false,
FunctionInputType::SelfKeyword(_) => true,
FunctionInputType::MutSelfKeyword(_) => true,
FunctionInputType::Variable(_) => false,
}
}
///
/// Returns `0` if the function input is a `self` or `mut self` keyword which does not have to
/// provided in a call to the function.
/// Returns `1` if a variable must be provided in a call to the function.
///
pub fn count(&self) -> usize {
if self.is_self() { 0 } else { 1 }
}
///
/// Return a new `FunctionInputType` from a given `FunctionInput`.
///
@ -64,7 +94,9 @@ impl FunctionInputType {
///
pub fn new(table: &SymbolTable, unresolved: FunctionInput) -> Result<Self, TypeError> {
Ok(match unresolved {
FunctionInput::InputKeyword(identifier) => FunctionInputType::InputKeyword(identifier),
FunctionInput::InputKeyword(keyword) => FunctionInputType::InputKeyword(Identifier::from(keyword)),
FunctionInput::SelfKeyword(_) => unimplemented!("cannot call self keyword from non-circuit context"),
FunctionInput::MutSelfKeyword(_) => unimplemented!("cannot call mut self keyword from non-circuit context"),
FunctionInput::Variable(variable) => {
let variable_resolved = FunctionInputVariableType::new(table, variable)?;
@ -88,7 +120,13 @@ impl FunctionInputType {
circuit_name: Identifier,
) -> Result<Self, TypeError> {
Ok(match unresolved {
FunctionInput::InputKeyword(identifier) => FunctionInputType::InputKeyword(identifier),
FunctionInput::InputKeyword(keyword) => FunctionInputType::InputKeyword(Identifier::from(keyword)),
FunctionInput::SelfKeyword(keyword) => {
FunctionInputType::SelfKeyword(Identifier::new_with_span(&circuit_name.name, &keyword.span))
}
FunctionInput::MutSelfKeyword(keyword) => {
FunctionInputType::MutSelfKeyword(Identifier::new_with_span(&circuit_name.name, &keyword.span))
}
FunctionInput::Variable(unresolved_function_input) => {
let function_input =
FunctionInputVariableType::new_from_circuit(table, unresolved_function_input, circuit_name)?;

View File

@ -1,16 +1,16 @@
[package]
name = "leo-type-inference"
version = "1.0.4"
version = "1.0.6"
authors = [ "The Aleo Team <hello@aleo.org>" ]
description = "Checks that a program is correct using type inference"
homepage = "https://aleo.org"
repository = "https://github.com/AleoHQ/leo"
keywords = [
"aleo",
"cryptography",
"leo",
"programming-language",
"zero-knowledge"
"aleo",
"cryptography",
"leo",
"programming-language",
"zero-knowledge"
]
categories = [ "cryptography::croptocurrencies", "web-programming" ]
include = [ "Cargo.toml", "src", "README.md", "LICENSE.md" ]
@ -19,19 +19,19 @@ edition = "2018"
[dependencies.leo-ast]
path = "../ast"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-imports]
path = "../imports"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-grammar]
path = "../grammar"
version = "1.0.4"
version = "1.0.6"
[dependencies.leo-symbol-table]
path = "../symbol-table"
version = "1.0.4"
version = "1.0.6"
[dependencies.serde_json]
version = "1.0"

View File

@ -172,6 +172,27 @@ impl FrameError {
Self::new_from_span(message, span)
}
///
/// The `self` keyword was used in a static circuit function signature.
///
pub fn self_not_available(span: &Span) -> Self {
let message = "keyword `self` is only available in static circuit functions.".to_string();
Self::new_from_span(message, span)
}
///
/// A static function was accessed using dot `.` syntax instead of double colon `::` syntax.
///
pub fn static_call_invalid(identifier: &Identifier) -> Self {
let message = format!(
"Static function `{}` must be called using double colon `::` syntax.",
identifier.name
);
Self::new_from_span(message, &identifier.span)
}
///
/// Attempted to access the index of a non-tuple type.
///

View File

@ -34,7 +34,7 @@ use leo_ast::{
Statement,
Variables,
};
use leo_symbol_table::{Attribute, CircuitFunctionType, CircuitType, FunctionType, SymbolTable, Type, TypeVariable};
use leo_symbol_table::{CircuitType, FunctionType, SymbolTable, Type, TypeVariable};
/// A vector of `TypeAssertion` predicates created from a function body.
#[derive(Clone)]
@ -100,13 +100,13 @@ impl Frame {
let identifier = &function.identifier;
// Find function name in circuit members.
let circuit_function_type = self_type.member_function_type(identifier).unwrap().to_owned();
let function_type = self_type.member_function_type(identifier).unwrap().to_owned();
// Create a new scope for the function variables.
let mut scope = Scope::new(Some(parent_scope));
// Initialize function inputs as variables.
scope.insert_function_inputs(&circuit_function_type.function.inputs)?;
scope.insert_function_inputs(&function_type.inputs)?;
// Create new list of scopes for frame.
let scopes = vec![scope];
@ -114,7 +114,7 @@ impl Frame {
// Create new frame struct.
// Update variables when encountering let/const variable definitions.
let mut frame = Self {
function_type: circuit_function_type.function,
function_type,
self_type: Some(self_type),
scopes,
statements: function.statements,
@ -955,22 +955,6 @@ impl Frame {
Ok(Type::Circuit(circuit_type.identifier))
}
///
/// Returns the type of the accessed circuit member when called as an expression.
///
fn parse_expression_circuit_member_access(
&mut self,
expression: &Expression,
identifier: &Identifier,
span: &Span,
) -> Result<Type, FrameError> {
// Parse circuit name.
let type_ = self.parse_expression(expression)?;
// Parse the circuit member access.
self.parse_circuit_member_access(type_, identifier, span)
}
///
/// Returns the type of the accessed circuit member.
///
@ -987,6 +971,22 @@ impl Frame {
Ok(circuit_type.member_type(&identifier)?)
}
///
/// Returns the type of the accessed circuit member when called as an expression.
///
fn parse_expression_circuit_member_access(
&mut self,
expression: &Expression,
identifier: &Identifier,
span: &Span,
) -> Result<Type, FrameError> {
// Parse circuit name.
let type_ = self.parse_expression(expression)?;
// Parse the circuit member access.
self.parse_circuit_member_access(type_, identifier, span)
}
///
/// Returns the type returned by calling the static circuit function.
///
@ -1029,10 +1029,10 @@ impl Frame {
match expression {
Expression::Identifier(identifier) => self.parse_program_function(identifier, span),
Expression::CircuitMemberAccess(expression, identifier, span) => {
self.parse_circuit_function(expression, identifier, span)
self.parse_circuit_function(expression, identifier, span, false)
}
Expression::CircuitStaticFunctionAccess(expression, identifier, span) => {
self.parse_static_circuit_function(expression, identifier, span)
self.parse_circuit_function(expression, identifier, span, true)
}
expression => Err(FrameError::invalid_function(expression, span)),
}
@ -1056,7 +1056,7 @@ impl Frame {
expression: &Expression,
identifier: &Identifier,
span: &Span,
) -> Result<&CircuitFunctionType, FrameError> {
) -> Result<&FunctionType, FrameError> {
// Parse circuit name.
let type_ = self.parse_expression(expression)?;
@ -1077,37 +1077,25 @@ impl Frame {
expression: &Expression,
identifier: &Identifier,
span: &Span,
is_static: bool,
) -> Result<FunctionType, FrameError> {
// Find circuit function type.
let circuit_function_type = self.parse_circuit_function_type(expression, identifier, span)?;
let function_type = self.parse_circuit_function_type(expression, identifier, span)?;
// Check that the function is non-static.
if let Some(Attribute::Static) = circuit_function_type.attribute {
return Err(FrameError::invalid_static_access(identifier));
// Case 1: static call + self keyword => Error
// Case 2: no static call + no self keywords => Error
// Case 3: static call + no self keywords => Ok
// Case 4: no static call + self keyword => Ok
if is_static && function_type.contains_self() {
return Err(FrameError::self_not_available(&identifier.span));
} else if !is_static && !function_type.contains_self() {
return Err(FrameError::static_call_invalid(&identifier));
}
if is_static && function_type.contains_self() {}
// Return the function type.
Ok(circuit_function_type.function.to_owned())
}
///
/// Returns a `FunctionType` given a circuit expression and static function identifier.
///
fn parse_static_circuit_function(
&mut self,
expression: &Expression,
identifier: &Identifier,
span: &Span,
) -> Result<FunctionType, FrameError> {
// Find circuit function type.
let circuit_function_type = self.parse_circuit_function_type(expression, identifier, span)?;
// Check that the function is static.
if let Some(Attribute::Static) = circuit_function_type.attribute {
Ok(circuit_function_type.function.to_owned())
} else {
Err(FrameError::invalid_member_access(identifier))
}
Ok(function_type.to_owned())
}
///
@ -1125,12 +1113,17 @@ impl Frame {
let function_type = self.parse_function_name(expression, span)?;
// Check the length of arguments
if function_type.inputs.len() != inputs.len() {
return Err(FrameError::num_inputs(function_type.inputs.len(), inputs.len(), span));
let num_inputs = function_type.num_inputs();
if num_inputs != inputs.len() {
return Err(FrameError::num_inputs(num_inputs, inputs.len(), span));
}
// Filter out `self` and `mut self` keywords.
let expected_inputs = function_type.filter_self_inputs();
// Assert function inputs are correct types.
for (expected_input, actual_input) in function_type.inputs.iter().zip(inputs) {
for (expected_input, actual_input) in expected_inputs.iter().zip(inputs) {
// Parse expected input type.
let expected_type = expected_input.type_();

View File

@ -82,7 +82,7 @@ impl TypeInference {
// Create a new function for each circuit member function.
for circuit_member in &circuit.members {
// ignore circuit member variables
if let CircuitMember::CircuitFunction(_, function) = circuit_member {
if let CircuitMember::CircuitFunction(function) = circuit_member {
// Collect `TypeAssertion` predicates from the function.
// Pass down circuit self type and circuit variable types to each function.
let frame = Frame::new_circuit_function(