refactor type resolution

This commit is contained in:
collin 2020-04-23 15:24:05 -07:00
parent 1e5c2a7ef9
commit 34d8a552e7
10 changed files with 1766 additions and 1417 deletions

View File

@ -1,5 +1,6 @@
def foo() -> (fe):
return 3fe
def main() -> (fe):
return foo()
a = 1fe
for i in 0..4 do
a = a + 1fe
endfor
return a

View File

@ -4,10 +4,8 @@
//! @author Collin Chin <collin@aleo.org>
//! @date 2020
use crate::program::constraints::{new_scope_from_variable, ResolvedProgram, ResolvedValue};
use crate::program::{
new_variable_from_variable, BooleanExpression, BooleanSpreadOrExpression, Parameter, Variable,
};
use crate::program::constraints::{ResolvedProgram, ResolvedValue};
use crate::program::{new_variable_from_variable, Parameter, Variable};
use snarkos_models::curves::{Field, PrimeField};
use snarkos_models::gadgets::{
@ -95,181 +93,177 @@ impl<F: Field + PrimeField, CS: ConstraintSystem<F>> ResolvedProgram<F, CS> {
// parameter_variable
}
pub(crate) fn bool_from_variable(
pub(crate) fn get_boolean_constant(bool: bool) -> ResolvedValue<F> {
ResolvedValue::Boolean(Boolean::Constant(bool))
}
// pub(crate) fn bool_from_variable(&mut self, scope: String, variable: Variable<F>) -> Boolean {
// // Evaluate variable name in current function scope
// let variable_name = new_scope_from_variable(scope, &variable);
//
// match self.get(&variable_name) {
// Some(value) => match value {
// ResolvedValue::Boolean(boolean) => boolean.clone(),
// value => unimplemented!(
// "expected boolean for variable {}, got {}",
// variable_name,
// value
// ),
// },
// None => unimplemented!("cannot resolve variable {} in program", variable_name),
// }
// }
// fn get_bool_value(
// &mut self,
// cs: &mut CS,
// scope: String,
// expression: BooleanExpression<F>,
// ) -> Boolean {
// match expression {
// BooleanExpression::Variable(variable) => self.bool_from_variable(scope, variable),
// BooleanExpression::Value(value) => Boolean::Constant(value),
// expression => match self.enforce_boolean_expression(cs, scope, expression) {
// ResolvedValue::Boolean(value) => value,
// _ => unimplemented!("boolean expression did not resolve to boolean"),
// },
// }
// }
pub(crate) fn enforce_not(value: ResolvedValue<F>) -> ResolvedValue<F> {
match value {
ResolvedValue::Boolean(boolean) => ResolvedValue::Boolean(boolean.not()),
value => unimplemented!("cannot enforce not on non-boolean value {}", value),
}
}
pub(crate) fn enforce_or(
&mut self,
cs: &mut CS,
scope: String,
variable: Variable<F>,
) -> Boolean {
// Evaluate variable name in current function scope
let variable_name = new_scope_from_variable(scope, &variable);
if self.contains_name(&variable_name) {
// TODO: return synthesis error: "assignment missing" here
match self.get(&variable_name).unwrap() {
ResolvedValue::Boolean(boolean) => boolean.clone(),
_ => panic!("expected a boolean, got field"),
left: ResolvedValue<F>,
right: ResolvedValue<F>,
) -> ResolvedValue<F> {
match (left, right) {
(ResolvedValue::Boolean(left_bool), ResolvedValue::Boolean(right_bool)) => {
ResolvedValue::Boolean(Boolean::or(cs, &left_bool, &right_bool).unwrap())
}
} else {
let argument = std::env::args()
.nth(1)
.unwrap_or("true".into())
.parse::<bool>()
.unwrap();
println!(" argument passed to command line a = {:?}\n", argument);
// let a = true;
Boolean::alloc(cs.ns(|| variable.name), || Ok(argument)).unwrap()
(left_value, right_value) => unimplemented!(
"cannot enforce or on non-boolean values {} || {}",
left_value,
right_value
),
}
}
fn get_bool_value(
pub(crate) fn enforce_and(
&mut self,
cs: &mut CS,
scope: String,
expression: BooleanExpression<F>,
) -> Boolean {
match expression {
BooleanExpression::Variable(variable) => self.bool_from_variable(cs, scope, variable),
BooleanExpression::Value(value) => Boolean::Constant(value),
expression => match self.enforce_boolean_expression(cs, scope, expression) {
ResolvedValue::Boolean(value) => value,
_ => unimplemented!("boolean expression did not resolve to boolean"),
},
left: ResolvedValue<F>,
right: ResolvedValue<F>,
) -> ResolvedValue<F> {
match (left, right) {
(ResolvedValue::Boolean(left_bool), ResolvedValue::Boolean(right_bool)) => {
ResolvedValue::Boolean(Boolean::and(cs, &left_bool, &right_bool).unwrap())
}
(left_value, right_value) => unimplemented!(
"cannot enforce and on non-boolean values {} && {}",
left_value,
right_value
),
}
}
fn enforce_not(
pub(crate) fn enforce_boolean_eq(
&mut self,
cs: &mut CS,
scope: String,
expression: BooleanExpression<F>,
) -> Boolean {
let expression = self.get_bool_value(cs, scope, expression);
expression.not()
}
fn enforce_or(
&mut self,
cs: &mut CS,
scope: String,
left: BooleanExpression<F>,
right: BooleanExpression<F>,
) -> Boolean {
let left = self.get_bool_value(cs, scope.clone(), left);
let right = self.get_bool_value(cs, scope.clone(), right);
Boolean::or(cs, &left, &right).unwrap()
}
fn enforce_and(
&mut self,
cs: &mut CS,
scope: String,
left: BooleanExpression<F>,
right: BooleanExpression<F>,
) -> Boolean {
let left = self.get_bool_value(cs, scope.clone(), left);
let right = self.get_bool_value(cs, scope.clone(), right);
Boolean::and(cs, &left, &right).unwrap()
}
fn enforce_bool_equality(
&mut self,
cs: &mut CS,
scope: String,
left: BooleanExpression<F>,
right: BooleanExpression<F>,
) -> Boolean {
let left = self.get_bool_value(cs, scope.clone(), left);
let right = self.get_bool_value(cs, scope.clone(), right);
left: Boolean,
right: Boolean,
) -> ResolvedValue<F> {
left.enforce_equal(cs.ns(|| format!("enforce bool equal")), &right)
.unwrap();
Boolean::Constant(true)
}
pub(crate) fn enforce_boolean_expression(
&mut self,
cs: &mut CS,
scope: String,
expression: BooleanExpression<F>,
) -> ResolvedValue<F> {
match expression {
BooleanExpression::Variable(variable) => {
ResolvedValue::Boolean(self.bool_from_variable(cs, scope, variable))
}
BooleanExpression::Value(value) => ResolvedValue::Boolean(Boolean::Constant(value)),
BooleanExpression::Not(expression) => {
ResolvedValue::Boolean(self.enforce_not(cs, scope, *expression))
}
BooleanExpression::Or(left, right) => {
ResolvedValue::Boolean(self.enforce_or(cs, scope, *left, *right))
}
BooleanExpression::And(left, right) => {
ResolvedValue::Boolean(self.enforce_and(cs, scope, *left, *right))
}
BooleanExpression::IntegerEq(left, right) => {
ResolvedValue::Boolean(self.enforce_integer_equality(cs, scope, *left, *right))
}
BooleanExpression::FieldEq(left, right) => {
ResolvedValue::Boolean(self.enforce_field_equality(cs, scope, *left, *right))
}
BooleanExpression::BoolEq(left, right) => {
ResolvedValue::Boolean(self.enforce_bool_equality(cs, scope, *left, *right))
}
BooleanExpression::IfElse(first, second, third) => {
let resolved_first =
match self.enforce_boolean_expression(cs, scope.clone(), *first) {
ResolvedValue::Boolean(resolved) => resolved,
_ => unimplemented!("if else conditional must resolve to boolean"),
};
if resolved_first.eq(&Boolean::Constant(true)) {
self.enforce_boolean_expression(cs, scope, *second)
} else {
self.enforce_boolean_expression(cs, scope, *third)
}
}
BooleanExpression::Array(array) => {
let mut result = vec![];
array.into_iter().for_each(|element| match *element {
BooleanSpreadOrExpression::Spread(spread) => match spread {
BooleanExpression::Variable(variable) => {
let array_name = new_scope_from_variable(scope.clone(), &variable);
match self.get(&array_name) {
Some(value) => match value {
ResolvedValue::BooleanArray(array) => {
result.extend(array.clone())
}
value => unimplemented!(
"spreads only implemented for arrays, got {}",
value
),
},
None => unimplemented!(
"cannot copy elements from array that does not exist {}",
variable.name
),
}
}
value => {
unimplemented!("spreads only implemented for arrays, got {}", value)
}
},
BooleanSpreadOrExpression::Expression(expression) => {
match self.enforce_boolean_expression(cs, scope.clone(), expression) {
ResolvedValue::Boolean(value) => result.push(value),
value => {
unimplemented!("expected boolean for boolean array, got {}", value)
}
}
}
});
ResolvedValue::BooleanArray(result)
}
expression => unimplemented!("boolean expression {}", expression),
}
ResolvedValue::Boolean(Boolean::Constant(true))
}
//
// pub(crate) fn enforce_boolean_expression(
// &mut self,
// cs: &mut CS,
// scope: String,
// expression: BooleanExpression<F>,
// ) -> ResolvedValue<F> {
// match expression {
// BooleanExpression::Variable(variable) => {
// ResolvedValue::Boolean(self.bool_from_variable(cs, scope, variable))
// }
// BooleanExpression::Value(value) => ResolvedValue::Boolean(Boolean::Constant(value)),
// BooleanExpression::Not(expression) => {
// ResolvedValue::Boolean(self.enforce_not(cs, scope, *expression))
// }
// BooleanExpression::Or(left, right) => {
// ResolvedValue::Boolean(self.enforce_or(cs, scope, *left, *right))
// }
// BooleanExpression::And(left, right) => {
// ResolvedValue::Boolean(self.enforce_and(cs, scope, *left, *right))
// }
// BooleanExpression::IntegerEq(left, right) => {
// ResolvedValue::Boolean(self.enforce_integer_equality(cs, scope, *left, *right))
// }
// BooleanExpression::FieldEq(left, right) => {
// ResolvedValue::Boolean(self.enforce_field_equality(cs, scope, *left, *right))
// }
// BooleanExpression::BoolEq(left, right) => {
// ResolvedValue::Boolean(self.enforce_bool_equality(cs, scope, *left, *right))
// }
// BooleanExpression::IfElse(first, second, third) => {
// let resolved_first =
// match self.enforce_boolean_expression(cs, scope.clone(), *first) {
// ResolvedValue::Boolean(resolved) => resolved,
// _ => unimplemented!("if else conditional must resolve to boolean"),
// };
// if resolved_first.eq(&Boolean::Constant(true)) {
// self.enforce_boolean_expression(cs, scope, *second)
// } else {
// self.enforce_boolean_expression(cs, scope, *third)
// }
// }
// BooleanExpression::Array(array) => {
// let mut result = vec![];
// array.into_iter().for_each(|element| match *element {
// BooleanSpreadOrExpression::Spread(spread) => match spread {
// BooleanExpression::Variable(variable) => {
// let array_name = new_scope_from_variable(scope.clone(), &variable);
// match self.get(&array_name) {
// Some(value) => match value {
// ResolvedValue::BooleanArray(array) => {
// result.extend(array.clone())
// }
// value => unimplemented!(
// "spreads only implemented for arrays, got {}",
// value
// ),
// },
// None => unimplemented!(
// "cannot copy elements from array that does not exist {}",
// variable.name
// ),
// }
// }
// value => {
// unimplemented!("spreads only implemented for arrays, got {}", value)
// }
// },
// BooleanSpreadOrExpression::Expression(expression) => {
// match self.enforce_boolean_expression(cs, scope.clone(), expression) {
// ResolvedValue::Boolean(value) => result.push(value),
// value => {
// unimplemented!("expected boolean for boolean array, got {}", value)
// }
// }
// }
// });
// ResolvedValue::BooleanArray(result)
// }
// expression => unimplemented!("boolean expression {}", expression),
// }
// }
}

View File

@ -5,14 +5,256 @@
//! @date 2020
use crate::program::constraints::{new_scope_from_variable, ResolvedProgram, ResolvedValue};
use crate::program::{
Expression, IntegerExpression, IntegerRangeOrExpression, StructMember, Variable,
};
use crate::program::{Expression, RangeOrExpression, SpreadOrExpression, StructMember, Variable};
use snarkos_models::curves::{Field, PrimeField};
use snarkos_models::gadgets::r1cs::ConstraintSystem;
use snarkos_models::gadgets::utilities::boolean::Boolean;
impl<F: Field + PrimeField, CS: ConstraintSystem<F>> ResolvedProgram<F, CS> {
/// Enforce a variable expression by getting the resolved value
fn enforce_variable(
&mut self,
scope: String,
unresolved_variable: Variable<F>,
) -> ResolvedValue<F> {
// Evaluate the variable name in the current function scope
let variable_name = new_scope_from_variable(scope, &unresolved_variable);
if self.contains_name(&variable_name) {
// Reassigning variable to another variable
self.get_mut(&variable_name).unwrap().clone()
} else if self.contains_variable(&unresolved_variable) {
// Check global scope (function and struct names)
self.get_mut_variable(&unresolved_variable).unwrap().clone()
} else {
unimplemented!("variable declaration {} not found", variable_name)
}
}
/// Enforce numerical operations
fn enforce_add_expression(
&mut self,
cs: &mut CS,
left: ResolvedValue<F>,
right: ResolvedValue<F>,
) -> ResolvedValue<F> {
match (left, right) {
(ResolvedValue::U32(num1), ResolvedValue::U32(num2)) => {
Self::enforce_u32_add(cs, num1, num2)
}
(ResolvedValue::FieldElement(fe1), ResolvedValue::FieldElement(fe2)) => {
self.enforce_field_add(fe1, fe2)
}
(val1, val2) => unimplemented!("cannot add {} + {}", val1, val2),
}
}
fn enforce_sub_expression(
&mut self,
cs: &mut CS,
left: ResolvedValue<F>,
right: ResolvedValue<F>,
) -> ResolvedValue<F> {
match (left, right) {
(ResolvedValue::U32(num1), ResolvedValue::U32(num2)) => {
Self::enforce_u32_sub(cs, num1, num2)
}
(ResolvedValue::FieldElement(fe1), ResolvedValue::FieldElement(fe2)) => {
self.enforce_field_sub(fe1, fe2)
}
(val1, val2) => unimplemented!("cannot subtract {} - {}", val1, val2),
}
}
fn enforce_mul_expression(
&mut self,
cs: &mut CS,
left: ResolvedValue<F>,
right: ResolvedValue<F>,
) -> ResolvedValue<F> {
match (left, right) {
(ResolvedValue::U32(num1), ResolvedValue::U32(num2)) => {
Self::enforce_u32_mul(cs, num1, num2)
}
(ResolvedValue::FieldElement(fe1), ResolvedValue::FieldElement(fe2)) => {
self.enforce_field_mul(fe1, fe2)
}
(val1, val2) => unimplemented!("cannot multiply {} * {}", val1, val2),
}
}
fn enforce_div_expression(
&mut self,
cs: &mut CS,
left: ResolvedValue<F>,
right: ResolvedValue<F>,
) -> ResolvedValue<F> {
match (left, right) {
(ResolvedValue::U32(num1), ResolvedValue::U32(num2)) => {
Self::enforce_u32_div(cs, num1, num2)
}
(ResolvedValue::FieldElement(fe1), ResolvedValue::FieldElement(fe2)) => {
self.enforce_field_div(fe1, fe2)
}
(val1, val2) => unimplemented!("cannot multiply {} * {}", val1, val2),
}
}
fn enforce_pow_expression(
&mut self,
cs: &mut CS,
left: ResolvedValue<F>,
right: ResolvedValue<F>,
) -> ResolvedValue<F> {
match (left, right) {
(ResolvedValue::U32(num1), ResolvedValue::U32(num2)) => {
Self::enforce_u32_pow(cs, num1, num2)
}
(ResolvedValue::FieldElement(fe1), ResolvedValue::FieldElement(fe2)) => {
self.enforce_field_pow(fe1, fe2)
}
(val1, val2) => unimplemented!("cannot multiply {} * {}", val1, val2),
}
}
/// Enforce Boolean operations
fn enforce_eq_expression(
&mut self,
cs: &mut CS,
left: ResolvedValue<F>,
right: ResolvedValue<F>,
) -> ResolvedValue<F> {
match (left, right) {
(ResolvedValue::Boolean(bool1), ResolvedValue::Boolean(bool2)) => {
self.enforce_boolean_eq(cs, bool1, bool2)
}
(ResolvedValue::U32(num1), ResolvedValue::U32(num2)) => {
Self::enforce_u32_eq(cs, num1, num2)
}
(ResolvedValue::FieldElement(fe1), ResolvedValue::FieldElement(fe2)) => {
self.enforce_field_eq(fe1, fe2)
}
(val1, val2) => unimplemented!("cannot enforce equality between {} == {}", val1, val2),
}
}
/// Enforce array expressions
fn enforce_array_expression(
&mut self,
cs: &mut CS,
scope: String,
array: Vec<Box<SpreadOrExpression<F>>>,
) -> ResolvedValue<F> {
let mut result = vec![];
array.into_iter().for_each(|element| match *element {
SpreadOrExpression::Spread(spread) => match spread {
Expression::Variable(variable) => {
let array_name = new_scope_from_variable(scope.clone(), &variable);
match self.get(&array_name) {
Some(value) => match value {
ResolvedValue::Array(array) => result.extend(array.clone()),
value => {
unimplemented!("spreads only implemented for arrays, got {}", value)
}
},
None => unimplemented!(
"cannot copy elements from array that does not exist {}",
variable.name
),
}
}
value => unimplemented!("spreads only implemented for arrays, got {}", value),
},
SpreadOrExpression::Expression(expression) => {
result.push(self.enforce_expression(cs, scope.clone(), expression));
}
});
ResolvedValue::Array(result)
}
pub(crate) fn enforce_index(
&mut self,
cs: &mut CS,
scope: String,
index: Expression<F>,
) -> usize {
match self.enforce_expression(cs, scope.clone(), index) {
ResolvedValue::U32(number) => number.value.unwrap() as usize,
value => unimplemented!("From index must resolve to an integer, got {}", value),
}
}
fn enforce_array_access_expression(
&mut self,
cs: &mut CS,
scope: String,
array: Box<Expression<F>>,
index: RangeOrExpression<F>,
) -> ResolvedValue<F> {
match self.enforce_expression(cs, scope.clone(), *array) {
ResolvedValue::Array(array) => {
match index {
RangeOrExpression::Range(from, to) => {
let from_resolved = match from {
Some(from_index) => from_index.to_usize(),
None => 0usize, // Array slice starts at index 0
};
let to_resolved = match to {
Some(to_index) => to_index.to_usize(),
None => array.len(), // Array slice ends at array length
};
ResolvedValue::Array(array[from_resolved..to_resolved].to_owned())
}
RangeOrExpression::Expression(index) => {
let index_resolved = self.enforce_index(cs, scope.clone(), index);
array[index_resolved].to_owned()
}
}
}
// ResolvedValue::U32Array(field_array) => {
// match index {
// RangeOrExpression::Range(from, to) => {
// let from_resolved = match from {
// Some(from_index) => self.enforce_index(cs, scope.clone(), from_index),
// None => 0usize, // Array slice starts at index 0
// };
// let to_resolved = match to {
// Some(to_index) => self.enforce_index(cs, scope.clone(), to_index),
// None => field_array.len(), // Array slice ends at array length
// };
// ResolvedValue::U32Array(field_array[from_resolved..to_resolved].to_owned())
// }
// RangeOrExpression::Expression(index) => {
// let index_resolved = self.enforce_index(cs, scope.clone(), index);
// ResolvedValue::U32(field_array[index_resolved].to_owned())
// }
// }
// }
// ResolvedValue::BooleanArray(bool_array) => {
// match index {
// RangeOrExpression::Range(from, to) => {
// let from_resolved = match from {
// Some(from_index) => self.enforce_index(cs, scope.clone(), from_index),
// None => 0usize, // Array slice starts at index 0
// };
// let to_resolved = match to {
// Some(to_index) => self.enforce_index(cs, scope.clone(), to_index),
// None => bool_array.len(), // Array slice ends at array length
// };
// ResolvedValue::BooleanArray(
// bool_array[from_resolved..to_resolved].to_owned(),
// )
// }
// RangeOrExpression::Expression(index) => {
// let index_resolved = self.enforce_index(cs, scope.clone(), index);
// ResolvedValue::Boolean(bool_array[index_resolved].to_owned())
// }
// }
// }
value => unimplemented!("Cannot access element of untyped array {}", value),
}
}
fn enforce_struct_expression(
&mut self,
cs: &mut CS,
@ -47,70 +289,6 @@ impl<F: Field + PrimeField, CS: ConstraintSystem<F>> ResolvedProgram<F, CS> {
}
}
pub(crate) fn enforce_index(
&mut self,
cs: &mut CS,
scope: String,
index: IntegerExpression<F>,
) -> usize {
match self.enforce_integer_expression(cs, scope.clone(), index) {
ResolvedValue::U32(number) => number.value.unwrap() as usize,
value => unimplemented!("From index must resolve to a uint32, got {}", value),
}
}
fn enforce_array_access_expression(
&mut self,
cs: &mut CS,
scope: String,
array: Box<Expression<F>>,
index: IntegerRangeOrExpression<F>,
) -> ResolvedValue<F> {
match self.enforce_expression(cs, scope.clone(), *array) {
ResolvedValue::U32Array(field_array) => {
match index {
IntegerRangeOrExpression::Range(from, to) => {
let from_resolved = match from {
Some(from_index) => self.enforce_index(cs, scope.clone(), from_index),
None => 0usize, // Array slice starts at index 0
};
let to_resolved = match to {
Some(to_index) => self.enforce_index(cs, scope.clone(), to_index),
None => field_array.len(), // Array slice ends at array length
};
ResolvedValue::U32Array(field_array[from_resolved..to_resolved].to_owned())
}
IntegerRangeOrExpression::Expression(index) => {
let index_resolved = self.enforce_index(cs, scope.clone(), index);
ResolvedValue::U32(field_array[index_resolved].to_owned())
}
}
}
ResolvedValue::BooleanArray(bool_array) => {
match index {
IntegerRangeOrExpression::Range(from, to) => {
let from_resolved = match from {
Some(from_index) => self.enforce_index(cs, scope.clone(), from_index),
None => 0usize, // Array slice starts at index 0
};
let to_resolved = match to {
Some(to_index) => self.enforce_index(cs, scope.clone(), to_index),
None => bool_array.len(), // Array slice ends at array length
};
ResolvedValue::BooleanArray(
bool_array[from_resolved..to_resolved].to_owned(),
)
}
IntegerRangeOrExpression::Expression(index) => {
let index_resolved = self.enforce_index(cs, scope.clone(), index);
ResolvedValue::Boolean(bool_array[index_resolved].to_owned())
}
}
}
value => unimplemented!("Cannot access element of untyped array {}", value),
}
}
fn enforce_struct_access_expression(
&mut self,
cs: &mut CS,
@ -152,55 +330,125 @@ impl<F: Field + PrimeField, CS: ConstraintSystem<F>> ResolvedProgram<F, CS> {
expression: Expression<F>,
) -> ResolvedValue<F> {
match expression {
Expression::Boolean(boolean_expression) => {
self.enforce_boolean_expression(cs, scope, boolean_expression)
}
Expression::Integer(integer_expression) => {
self.enforce_integer_expression(cs, scope, integer_expression)
}
Expression::FieldElement(field_expression) => {
self.enforce_field_expression(cs, scope, field_expression)
}
// Variables
Expression::Variable(unresolved_variable) => {
let variable_name = new_scope_from_variable(scope, &unresolved_variable);
self.enforce_variable(scope, unresolved_variable)
}
// Evaluate the variable name in the current function scope
if self.contains_name(&variable_name) {
// Reassigning variable to another variable
self.get_mut(&variable_name).unwrap().clone()
} else if self.contains_variable(&unresolved_variable) {
// Check global scope (function and struct names)
self.get_mut_variable(&unresolved_variable).unwrap().clone()
// Values
Expression::Integer(integer) => Self::get_integer_constant(integer),
Expression::FieldElement(fe) => ResolvedValue::FieldElement(fe),
Expression::Boolean(bool) => Self::get_boolean_constant(bool),
// Binary operations
Expression::Add(left, right) => {
let resolved_left = self.enforce_expression(cs, scope.clone(), *left);
let resolved_right = self.enforce_expression(cs, scope.clone(), *right);
self.enforce_add_expression(cs, resolved_left, resolved_right)
}
Expression::Sub(left, right) => {
let resolved_left = self.enforce_expression(cs, scope.clone(), *left);
let resolved_right = self.enforce_expression(cs, scope.clone(), *right);
self.enforce_sub_expression(cs, resolved_left, resolved_right)
}
Expression::Mul(left, right) => {
let resolved_left = self.enforce_expression(cs, scope.clone(), *left);
let resolved_right = self.enforce_expression(cs, scope.clone(), *right);
self.enforce_mul_expression(cs, resolved_left, resolved_right)
}
Expression::Div(left, right) => {
let resolved_left = self.enforce_expression(cs, scope.clone(), *left);
let resolved_right = self.enforce_expression(cs, scope.clone(), *right);
self.enforce_div_expression(cs, resolved_left, resolved_right)
}
Expression::Pow(left, right) => {
let resolved_left = self.enforce_expression(cs, scope.clone(), *left);
let resolved_right = self.enforce_expression(cs, scope.clone(), *right);
self.enforce_pow_expression(cs, resolved_left, resolved_right)
}
// Boolean operations
Expression::Not(expression) => {
Self::enforce_not(self.enforce_expression(cs, scope, *expression))
}
Expression::Or(left, right) => {
let resolved_left = self.enforce_expression(cs, scope.clone(), *left);
let resolved_right = self.enforce_expression(cs, scope.clone(), *right);
self.enforce_or(cs, resolved_left, resolved_right)
}
Expression::And(left, right) => {
let resolved_left = self.enforce_expression(cs, scope.clone(), *left);
let resolved_right = self.enforce_expression(cs, scope.clone(), *right);
self.enforce_and(cs, resolved_left, resolved_right)
}
Expression::Eq(left, right) => {
let resolved_left = self.enforce_expression(cs, scope.clone(), *left);
let resolved_right = self.enforce_expression(cs, scope.clone(), *right);
self.enforce_eq_expression(cs, resolved_left, resolved_right)
}
Expression::Geq(left, right) => {
unimplemented!("expression {} >= {} unimplemented", left, right)
}
Expression::Gt(left, right) => {
unimplemented!("expression {} > {} unimplemented", left, right)
}
Expression::Leq(left, right) => {
unimplemented!("expression {} <= {} unimplemented", left, right)
}
Expression::Lt(left, right) => {
unimplemented!("expression {} < {} unimplemented", left, right)
}
// Conditionals
Expression::IfElse(first, second, third) => {
let resolved_first = match self.enforce_expression(cs, scope.clone(), *first) {
ResolvedValue::Boolean(resolved) => resolved,
_ => unimplemented!("if else conditional must resolve to boolean"),
};
if resolved_first.eq(&Boolean::Constant(true)) {
self.enforce_expression(cs, scope, *second)
} else {
// The type of the unassigned variable depends on what is passed in
if std::env::args()
.nth(1)
.expect("variable declaration not passed in")
.parse::<bool>()
.is_ok()
{
ResolvedValue::Boolean(self.bool_from_variable(
cs,
variable_name,
unresolved_variable,
))
} else {
self.integer_from_variable(variable_name, unresolved_variable)
self.enforce_expression(cs, scope, *third)
}
}
// Arrays
Expression::Array(array) => self.enforce_array_expression(cs, scope, array),
Expression::ArrayAccess(array, index) => {
self.enforce_array_access_expression(cs, scope, array, *index)
}
// Structs
Expression::Struct(struct_name, members) => {
self.enforce_struct_expression(cs, scope, struct_name, members)
}
Expression::ArrayAccess(array, index) => {
self.enforce_array_access_expression(cs, scope, array, index)
}
Expression::StructMemberAccess(struct_variable, struct_member) => {
self.enforce_struct_access_expression(cs, scope, struct_variable, struct_member)
}
// Functions
Expression::FunctionCall(function, arguments) => {
self.enforce_function_access_expression(cs, scope, function, arguments)
} // expression => unimplemented!("expression not impl {}", expression),
}
// Expression::BooleanExp(boolean_expression) => {
// self.enforce_boolean_expression(cs, scope, boolean_expression)
// }
// Expression::IntegerExp(integer_expression) => {
// self.enforce_integer_expression(cs, scope, integer_expression)
// }
// Expression::FieldElementExp(field_expression) => {
// self.enforce_field_expression(cs, scope, field_expression)
// }
_ => unimplemented!(),
}
}
}

View File

@ -4,10 +4,8 @@
//! @author Collin Chin <collin@aleo.org>
//! @date 2020
use crate::program::constraints::{new_scope_from_variable, ResolvedProgram, ResolvedValue};
use crate::program::{
new_variable_from_variable, FieldExpression, FieldSpreadOrExpression, Parameter, Variable,
};
use crate::program::constraints::{ResolvedProgram, ResolvedValue};
use crate::program::{new_variable_from_variable, Parameter, Variable};
use snarkos_models::curves::{Field, PrimeField};
use snarkos_models::gadgets::{r1cs::ConstraintSystem, utilities::boolean::Boolean};
@ -92,181 +90,188 @@ impl<F: Field + PrimeField, CS: ConstraintSystem<F>> ResolvedProgram<F, CS> {
// parameter_variable
}
fn field_element_from_variable(&mut self, scope: String, variable: Variable<F>) -> F {
// Evaluate variable name in current function scope
let variable_name = new_scope_from_variable(scope, &variable);
// fn field_element_from_variable(&mut self, scope: String, variable: Variable<F>) -> F {
// // Evaluate variable name in current function scope
// let variable_name = new_scope_from_variable(scope, &variable);
//
// match self.get(&variable_name) {
// Some(value) => match value {
// ResolvedValue::FieldElement(fe) => fe.clone(),
// value => unimplemented!(
// "expected field element for variable {}, got {}",
// variable_name,
// value
// ),
// },
// None => unimplemented!("cannot resolve variable {} in program", variable_name),
// }
// }
if self.contains_name(&variable_name) {
// TODO: return synthesis error: "assignment missing" here
match self.get(&variable_name).unwrap().clone() {
ResolvedValue::FieldElement(fe) => fe,
value => unimplemented!(
"expected field element for variable {}, got {}",
variable_name,
value
),
}
} else {
unimplemented!("cannot resolve variable {} in program", variable_name)
}
// fn get_field_value(&mut self, cs: &mut CS, scope: String, expression: FieldExpression<F>) -> F {
// match expression {
// FieldExpression::Variable(variable) => {
// self.field_element_from_variable(scope, variable)
// }
// FieldExpression::Number(element) => element,
// }
// }
pub(crate) fn enforce_field_eq(&mut self, fe1: F, fe2: F) -> ResolvedValue<F> {
ResolvedValue::Boolean(Boolean::Constant(fe1.eq(&fe2)))
}
fn get_field_value(&mut self, cs: &mut CS, scope: String, expression: FieldExpression<F>) -> F {
match expression {
FieldExpression::Variable(variable) => {
self.field_element_from_variable(scope, variable)
}
FieldExpression::Number(element) => element,
expression => match self.enforce_field_expression(cs, scope, expression) {
ResolvedValue::FieldElement(element) => element,
value => unimplemented!("expected field element, got {}", value),
},
}
pub(crate) fn enforce_field_add(&mut self, fe1: F, fe2: F) -> ResolvedValue<F> {
ResolvedValue::FieldElement(fe1.add(&fe2))
}
pub(crate) fn enforce_field_equality(
&mut self,
cs: &mut CS,
scope: String,
left: FieldExpression<F>,
right: FieldExpression<F>,
) -> Boolean {
let left = self.get_field_value(cs, scope.clone(), left);
let right = self.get_field_value(cs, scope.clone(), right);
Boolean::Constant(left.eq(&right))
pub(crate) fn enforce_field_sub(&mut self, fe1: F, fe2: F) -> ResolvedValue<F> {
ResolvedValue::FieldElement(fe1.sub(&fe2))
}
fn enforce_field_add(
&mut self,
cs: &mut CS,
scope: String,
left: FieldExpression<F>,
right: FieldExpression<F>,
) -> ResolvedValue<F> {
let left = self.get_field_value(cs, scope.clone(), left);
let right = self.get_field_value(cs, scope.clone(), right);
ResolvedValue::FieldElement(left.add(&right))
pub(crate) fn enforce_field_mul(&mut self, fe1: F, fe2: F) -> ResolvedValue<F> {
ResolvedValue::FieldElement(fe1.mul(&fe2))
}
fn enforce_field_sub(
&mut self,
cs: &mut CS,
scope: String,
left: FieldExpression<F>,
right: FieldExpression<F>,
) -> ResolvedValue<F> {
let left = self.get_field_value(cs, scope.clone(), left);
let right = self.get_field_value(cs, scope.clone(), right);
ResolvedValue::FieldElement(left.sub(&right))
pub(crate) fn enforce_field_div(&mut self, fe1: F, fe2: F) -> ResolvedValue<F> {
ResolvedValue::FieldElement(fe1.div(&fe2))
}
fn enforce_field_mul(
&mut self,
cs: &mut CS,
scope: String,
left: FieldExpression<F>,
right: FieldExpression<F>,
) -> ResolvedValue<F> {
let left = self.get_field_value(cs, scope.clone(), left);
let right = self.get_field_value(cs, scope.clone(), right);
ResolvedValue::FieldElement(left.mul(&right))
}
fn enforce_field_div(
&mut self,
cs: &mut CS,
scope: String,
left: FieldExpression<F>,
right: FieldExpression<F>,
) -> ResolvedValue<F> {
let left = self.get_field_value(cs, scope.clone(), left);
let right = self.get_field_value(cs, scope.clone(), right);
ResolvedValue::FieldElement(left.div(&right))
}
fn enforce_field_pow(
&mut self,
_cs: &mut CS,
_scope: String,
_left: FieldExpression<F>,
_right: FieldExpression<F>,
) -> ResolvedValue<F> {
pub(crate) fn enforce_field_pow(&mut self, _fe1: F, _fe2: F) -> ResolvedValue<F> {
unimplemented!("field element exponentiation not supported")
// ResolvedValue::FieldElement(fe1.pow(&fe2))
}
// fn enforce_field_add_old(
// &mut self,
// cs: &mut CS,
// scope: String,
// left: FieldExpression<F>,
// right: FieldExpression<F>,
// ) -> ResolvedValue<F> {
// let left = self.get_field_value(cs, scope.clone(), left);
// let right = self.get_field_value(cs, scope.clone(), right);
//
// ResolvedValue::FieldElement(left.pow(&right))
}
// ResolvedValue::FieldElement(left.add(&right))
// }
//
// fn enforce_field_sub_old(
// &mut self,
// cs: &mut CS,
// scope: String,
// left: FieldExpression<F>,
// right: FieldExpression<F>,
// ) -> ResolvedValue<F> {
// let left = self.get_field_value(cs, scope.clone(), left);
// let right = self.get_field_value(cs, scope.clone(), right);
//
// ResolvedValue::FieldElement(left.sub(&right))
// }
//
// fn enforce_field_mul_old(
// &mut self,
// cs: &mut CS,
// scope: String,
// left: FieldExpression<F>,
// right: FieldExpression<F>,
// ) -> ResolvedValue<F> {
// let left = self.get_field_value(cs, scope.clone(), left);
// let right = self.get_field_value(cs, scope.clone(), right);
//
// ResolvedValue::FieldElement(left.mul(&right))
// }
//
// fn enforce_field_div_old(
// &mut self,
// cs: &mut CS,
// scope: String,
// left: FieldExpression<F>,
// right: FieldExpression<F>,
// ) -> ResolvedValue<F> {
// let left = self.get_field_value(cs, scope.clone(), left);
// let right = self.get_field_value(cs, scope.clone(), right);
//
// ResolvedValue::FieldElement(left.div(&right))
// }
//
// fn enforce_field_pow_old(
// &mut self,
// _cs: &mut CS,
// _scope: String,
// _left: FieldExpression<F>,
// _right: FieldExpression<F>,
// ) -> ResolvedValue<F> {
// unimplemented!("field element exponentiation not supported")
// // let left = self.get_field_value(cs, scope.clone(), left);
// // let right = self.get_field_value(cs, scope.clone(), right);
// //
// // ResolvedValue::FieldElement(left.pow(&right))
// }
pub(crate) fn enforce_field_expression(
&mut self,
cs: &mut CS,
scope: String,
expression: FieldExpression<F>,
) -> ResolvedValue<F> {
match expression {
FieldExpression::Variable(variable) => {
ResolvedValue::FieldElement(self.field_element_from_variable(scope, variable))
}
FieldExpression::Number(field) => ResolvedValue::FieldElement(field),
FieldExpression::Add(left, right) => self.enforce_field_add(cs, scope, *left, *right),
FieldExpression::Sub(left, right) => self.enforce_field_sub(cs, scope, *left, *right),
FieldExpression::Mul(left, right) => self.enforce_field_mul(cs, scope, *left, *right),
FieldExpression::Div(left, right) => self.enforce_field_div(cs, scope, *left, *right),
FieldExpression::Pow(left, right) => self.enforce_field_pow(cs, scope, *left, *right),
FieldExpression::IfElse(first, second, third) => {
let resolved_first =
match self.enforce_boolean_expression(cs, scope.clone(), *first) {
ResolvedValue::Boolean(resolved) => resolved,
_ => unimplemented!("if else conditional must resolve to boolean"),
};
if resolved_first.eq(&Boolean::Constant(true)) {
self.enforce_field_expression(cs, scope, *second)
} else {
self.enforce_field_expression(cs, scope, *third)
}
}
FieldExpression::Array(array) => {
let mut result = vec![];
array.into_iter().for_each(|element| match *element {
FieldSpreadOrExpression::Spread(spread) => match spread {
FieldExpression::Variable(variable) => {
let array_name = new_scope_from_variable(scope.clone(), &variable);
match self.get(&array_name) {
Some(value) => match value {
ResolvedValue::FieldElementArray(array) => {
result.extend(array.clone())
}
value => unimplemented!(
"spreads only implemented for arrays, got {}",
value
),
},
None => unimplemented!(
"cannot copy elements from array that does not exist {}",
variable.name
),
}
}
value => {
unimplemented!("spreads only implemented for arrays, got {}", value)
}
},
FieldSpreadOrExpression::Expression(expression) => {
match self.enforce_field_expression(cs, scope.clone(), expression) {
ResolvedValue::FieldElement(value) => result.push(value),
_ => unimplemented!("cannot resolve field"),
}
}
});
ResolvedValue::FieldElementArray(result)
}
}
}
// pub(crate) fn enforce_field_expression(
// &mut self,
// cs: &mut CS,
// scope: String,
// expression: FieldExpression<F>,
// ) -> ResolvedValue<F> {
// match expression {
// FieldExpression::Variable(variable) => {
// ResolvedValue::FieldElement(self.field_element_from_variable(scope, variable))
// }
// FieldExpression::Number(field) => ResolvedValue::FieldElement(field),
// FieldExpression::Add(left, right) => self.enforce_field_add_old(cs, scope, *left, *right),
// FieldExpression::Sub(left, right) => self.enforce_field_sub_old(cs, scope, *left, *right),
// FieldExpression::Mul(left, right) => self.enforce_field_mul_old(cs, scope, *left, *right),
// FieldExpression::Div(left, right) => self.enforce_field_div_old(cs, scope, *left, *right),
// FieldExpression::Pow(left, right) => self.enforce_field_pow_old(cs, scope, *left, *right),
// FieldExpression::IfElse(first, second, third) => {
// let resolved_first =
// match self.enforce_boolean_expression(cs, scope.clone(), *first) {
// ResolvedValue::Boolean(resolved) => resolved,
// _ => unimplemented!("if else conditional must resolve to boolean"),
// };
//
// if resolved_first.eq(&Boolean::Constant(true)) {
// self.enforce_field_expression(cs, scope, *second)
// } else {
// self.enforce_field_expression(cs, scope, *third)
// }
// }
// FieldExpression::Array(array) => {
// let mut result = vec![];
// array.into_iter().for_each(|element| match *element {
// FieldSpreadOrExpression::Spread(spread) => match spread {
// FieldExpression::Variable(variable) => {
// let array_name = new_scope_from_variable(scope.clone(), &variable);
// match self.get(&array_name) {
// Some(value) => match value {
// ResolvedValue::FieldElementArray(array) => {
// result.extend(array.clone())
// }
// value => unimplemented!(
// "spreads only implemented for arrays, got {}",
// value
// ),
// },
// None => unimplemented!(
// "cannot copy elements from array that does not exist {}",
// variable.name
// ),
// }
// }
// value => {
// unimplemented!("spreads only implemented for arrays, got {}", value)
// }
// },
// FieldSpreadOrExpression::Expression(expression) => {
// match self.enforce_field_expression(cs, scope.clone(), expression) {
// ResolvedValue::FieldElement(value) => result.push(value),
// _ => unimplemented!("cannot resolve field"),
// }
// }
// });
// ResolvedValue::FieldElementArray(result)
// }
// }
// }
}

View File

@ -4,11 +4,8 @@
//! @author Collin Chin <collin@aleo.org>
//! @date 2020
use crate::program::constraints::{new_scope_from_variable, ResolvedProgram, ResolvedValue};
use crate::program::{
new_variable_from_variable, Integer, IntegerExpression, IntegerSpreadOrExpression, Parameter,
Variable,
};
use crate::program::constraints::{ResolvedProgram, ResolvedValue};
use crate::program::{new_variable_from_variable, Integer, Parameter, Variable};
use snarkos_models::curves::{Field, PrimeField};
use snarkos_models::gadgets::{
@ -96,42 +93,36 @@ impl<F: Field + PrimeField, CS: ConstraintSystem<F>> ResolvedProgram<F, CS> {
// parameter_variable
}
pub(crate) fn integer_from_variable(
&mut self,
scope: String,
variable: Variable<F>,
) -> ResolvedValue<F> {
// Evaluate variable name in current function scope
let variable_name = new_scope_from_variable(scope, &variable);
// pub(crate) fn integer_from_variable(
// &mut self,
// scope: String,
// variable: Variable<F>,
// ) -> ResolvedValue<F> {
// // Evaluate variable name in current function scope
// let variable_name = new_scope_from_variable(scope, &variable);
//
// match self.get(&variable_name) {
// Some(value) => value.clone(),
// None => unimplemented!("cannot resolve variable {} in program", variable_name),
// }
// }
if self.contains_name(&variable_name) {
// TODO: return synthesis error: "assignment missing" here
self.get(&variable_name).unwrap().clone()
} else {
unimplemented!("cannot resolve variable {} in program", variable_name)
}
}
fn get_integer_constant(integer: Integer) -> ResolvedValue<F> {
pub(crate) fn get_integer_constant(integer: Integer) -> ResolvedValue<F> {
match integer {
Integer::U32(u32_value) => ResolvedValue::U32(UInt32::constant(u32_value)),
}
}
//
// pub(crate) fn get_integer_value(
// integer: Integer
// ) -> ResolvedValue<F> {
// match expression {
// IntegerExpression::Variable(variable) => self.integer_from_variable(scope, variable),
// IntegerExpression::Number(number) => Self::get_integer_constant(number),
// }
// }
fn get_integer_value(
&mut self,
cs: &mut CS,
scope: String,
expression: IntegerExpression<F>,
) -> ResolvedValue<F> {
match expression {
IntegerExpression::Variable(variable) => self.integer_from_variable(scope, variable),
IntegerExpression::Number(number) => Self::get_integer_constant(number),
expression => self.enforce_integer_expression(cs, scope, expression),
}
}
fn enforce_u32_equality(cs: &mut CS, left: UInt32, right: UInt32) -> Boolean {
pub(crate) fn enforce_u32_eq(cs: &mut CS, left: UInt32, right: UInt32) -> ResolvedValue<F> {
left.conditional_enforce_equal(
cs.ns(|| format!("enforce field equal")),
&right,
@ -139,30 +130,10 @@ impl<F: Field + PrimeField, CS: ConstraintSystem<F>> ResolvedProgram<F, CS> {
)
.unwrap();
Boolean::Constant(true)
ResolvedValue::Boolean(Boolean::Constant(true))
}
pub(crate) fn enforce_integer_equality(
&mut self,
cs: &mut CS,
scope: String,
left: IntegerExpression<F>,
right: IntegerExpression<F>,
) -> Boolean {
let left = self.get_integer_value(cs, scope.clone(), left);
let right = self.get_integer_value(cs, scope.clone(), right);
match (left, right) {
(ResolvedValue::U32(left_u32), ResolvedValue::U32(right_u32)) => {
Self::enforce_u32_equality(cs, left_u32, right_u32)
}
(left_int, right_int) => {
unimplemented!("equality not impl between {} == {}", left_int, right_int)
}
}
}
fn enforce_u32_add(cs: &mut CS, left: UInt32, right: UInt32) -> ResolvedValue<F> {
pub(crate) fn enforce_u32_add(cs: &mut CS, left: UInt32, right: UInt32) -> ResolvedValue<F> {
ResolvedValue::U32(
UInt32::addmany(
cs.ns(|| format!("enforce {} + {}", left.value.unwrap(), right.value.unwrap())),
@ -172,27 +143,7 @@ impl<F: Field + PrimeField, CS: ConstraintSystem<F>> ResolvedProgram<F, CS> {
)
}
fn enforce_integer_add(
&mut self,
cs: &mut CS,
scope: String,
left: IntegerExpression<F>,
right: IntegerExpression<F>,
) -> ResolvedValue<F> {
let left = self.get_integer_value(cs, scope.clone(), left);
let right = self.get_integer_value(cs, scope.clone(), right);
match (left, right) {
(ResolvedValue::U32(left_u32), ResolvedValue::U32(right_u32)) => {
Self::enforce_u32_add(cs, left_u32, right_u32)
}
(left_int, right_int) => {
unimplemented!("add not impl between {} + {}", left_int, right_int)
}
}
}
fn enforce_u32_sub(cs: &mut CS, left: UInt32, right: UInt32) -> ResolvedValue<F> {
pub(crate) fn enforce_u32_sub(cs: &mut CS, left: UInt32, right: UInt32) -> ResolvedValue<F> {
ResolvedValue::U32(
left.sub(
cs.ns(|| format!("enforce {} - {}", left.value.unwrap(), right.value.unwrap())),
@ -202,27 +153,7 @@ impl<F: Field + PrimeField, CS: ConstraintSystem<F>> ResolvedProgram<F, CS> {
)
}
fn enforce_integer_sub(
&mut self,
cs: &mut CS,
scope: String,
left: IntegerExpression<F>,
right: IntegerExpression<F>,
) -> ResolvedValue<F> {
let left = self.get_integer_value(cs, scope.clone(), left);
let right = self.get_integer_value(cs, scope.clone(), right);
match (left, right) {
(ResolvedValue::U32(left_u32), ResolvedValue::U32(right_u32)) => {
Self::enforce_u32_sub(cs, left_u32, right_u32)
}
(left_int, right_int) => {
unimplemented!("add not impl between {} + {}", left_int, right_int)
}
}
}
fn enforce_u32_mul(cs: &mut CS, left: UInt32, right: UInt32) -> ResolvedValue<F> {
pub(crate) fn enforce_u32_mul(cs: &mut CS, left: UInt32, right: UInt32) -> ResolvedValue<F> {
ResolvedValue::U32(
left.mul(
cs.ns(|| format!("enforce {} * {}", left.value.unwrap(), right.value.unwrap())),
@ -231,28 +162,7 @@ impl<F: Field + PrimeField, CS: ConstraintSystem<F>> ResolvedProgram<F, CS> {
.unwrap(),
)
}
fn enforce_integer_mul(
&mut self,
cs: &mut CS,
scope: String,
left: IntegerExpression<F>,
right: IntegerExpression<F>,
) -> ResolvedValue<F> {
let left = self.get_integer_value(cs, scope.clone(), left);
let right = self.get_integer_value(cs, scope.clone(), right);
match (left, right) {
(ResolvedValue::U32(left_u32), ResolvedValue::U32(right_u32)) => {
Self::enforce_u32_mul(cs, left_u32, right_u32)
}
(left_int, right_int) => {
unimplemented!("add not impl between {} + {}", left_int, right_int)
}
}
}
fn enforce_u32_div(cs: &mut CS, left: UInt32, right: UInt32) -> ResolvedValue<F> {
pub(crate) fn enforce_u32_div(cs: &mut CS, left: UInt32, right: UInt32) -> ResolvedValue<F> {
ResolvedValue::U32(
left.div(
cs.ns(|| format!("enforce {} / {}", left.value.unwrap(), right.value.unwrap())),
@ -261,28 +171,7 @@ impl<F: Field + PrimeField, CS: ConstraintSystem<F>> ResolvedProgram<F, CS> {
.unwrap(),
)
}
fn enforce_integer_div(
&mut self,
cs: &mut CS,
scope: String,
left: IntegerExpression<F>,
right: IntegerExpression<F>,
) -> ResolvedValue<F> {
let left = self.get_integer_value(cs, scope.clone(), left);
let right = self.get_integer_value(cs, scope.clone(), right);
match (left, right) {
(ResolvedValue::U32(left_u32), ResolvedValue::U32(right_u32)) => {
Self::enforce_u32_div(cs, left_u32, right_u32)
}
(left_int, right_int) => {
unimplemented!("add not impl between {} + {}", left_int, right_int)
}
}
}
fn enforce_u32_pow(cs: &mut CS, left: UInt32, right: UInt32) -> ResolvedValue<F> {
pub(crate) fn enforce_u32_pow(cs: &mut CS, left: UInt32, right: UInt32) -> ResolvedValue<F> {
ResolvedValue::U32(
left.pow(
cs.ns(|| {
@ -298,96 +187,242 @@ impl<F: Field + PrimeField, CS: ConstraintSystem<F>> ResolvedProgram<F, CS> {
)
}
fn enforce_integer_pow(
&mut self,
cs: &mut CS,
scope: String,
left: IntegerExpression<F>,
right: IntegerExpression<F>,
) -> ResolvedValue<F> {
let left = self.get_integer_value(cs, scope.clone(), left);
let right = self.get_integer_value(cs, scope.clone(), right);
// pub(crate) fn enforce_integer_equality(
// &mut self,
// cs: &mut CS,
// scope: String,
// left: UInt32,
// right: UInt32,
// ) -> Boolean {
// let left = self.get_integer_value(cs, scope.clone(), left);
// let right = self.get_integer_value(cs, scope.clone(), right);
//
// match (left, right) {
// (ResolvedValue::U32(left_u32), ResolvedValue::U32(right_u32)) => {
// Self::enforce_u32_equality(cs, left_u32, right_u32)
// }
// (left_int, right_int) => {
// unimplemented!("equality not impl between {} == {}", left_int, right_int)
// }
// }
// }
match (left, right) {
(ResolvedValue::U32(left_u32), ResolvedValue::U32(right_u32)) => {
Self::enforce_u32_pow(cs, left_u32, right_u32)
}
(left_int, right_int) => {
unimplemented!("add not impl between {} + {}", left_int, right_int)
}
}
}
// fn enforce_integer_add_old(
// &mut self,
// cs: &mut CS,
// scope: String,
// left: IntegerExpression<F>,
// right: IntegerExpression<F>,
// ) -> ResolvedValue<F> {
// let left = self.get_integer_value(cs, scope.clone(), left);
// let right = self.get_integer_value(cs, scope.clone(), right);
//
// match (left, right) {
// (ResolvedValue::U32(left_u32), ResolvedValue::U32(right_u32)) => {
// Self::enforce_u32_add(cs, left_u32, right_u32)
// }
// (left_int, right_int) => {
// unimplemented!("add not impl between {} + {}", left_int, right_int)
// }
// }
// }
pub(crate) fn enforce_integer_expression(
&mut self,
cs: &mut CS,
scope: String,
expression: IntegerExpression<F>,
) -> ResolvedValue<F> {
match expression {
IntegerExpression::Variable(variable) => self.integer_from_variable(scope, variable),
IntegerExpression::Number(number) => Self::get_integer_constant(number),
IntegerExpression::Add(left, right) => {
self.enforce_integer_add(cs, scope, *left, *right)
}
IntegerExpression::Sub(left, right) => {
self.enforce_integer_sub(cs, scope, *left, *right)
}
IntegerExpression::Mul(left, right) => {
self.enforce_integer_mul(cs, scope, *left, *right)
}
IntegerExpression::Div(left, right) => {
self.enforce_integer_div(cs, scope, *left, *right)
}
IntegerExpression::Pow(left, right) => {
self.enforce_integer_pow(cs, scope, *left, *right)
}
IntegerExpression::IfElse(first, second, third) => {
let resolved_first =
match self.enforce_boolean_expression(cs, scope.clone(), *first) {
ResolvedValue::Boolean(resolved) => resolved,
_ => unimplemented!("if else conditional must resolve to boolean"),
};
// fn enforce_u32_sub_old(cs: &mut CS, left: UInt32, right: UInt32) -> ResolvedValue<F> {
// ResolvedValue::U32(
// left.sub(
// cs.ns(|| format!("enforce {} - {}", left.value.unwrap(), right.value.unwrap())),
// &right,
// )
// .unwrap(),
// )
// }
if resolved_first.eq(&Boolean::Constant(true)) {
self.enforce_integer_expression(cs, scope, *second)
} else {
self.enforce_integer_expression(cs, scope, *third)
}
}
IntegerExpression::Array(array) => {
let mut result = vec![];
array.into_iter().for_each(|element| match *element {
IntegerSpreadOrExpression::Spread(spread) => match spread {
IntegerExpression::Variable(variable) => {
let array_name = new_scope_from_variable(scope.clone(), &variable);
match self.get(&array_name) {
Some(value) => match value {
ResolvedValue::U32Array(array) => result.extend(array.clone()),
value => unimplemented!(
"spreads only implemented for arrays, got {}",
value
),
},
None => unimplemented!(
"cannot copy elements from array that does not exist {}",
variable.name
),
}
}
value => {
unimplemented!("spreads only implemented for arrays, got {}", value)
}
},
IntegerSpreadOrExpression::Expression(expression) => {
match self.enforce_integer_expression(cs, scope.clone(), expression) {
ResolvedValue::U32(value) => result.push(value),
_ => unimplemented!("cannot resolve field"),
}
}
});
ResolvedValue::U32Array(result)
}
}
}
// fn enforce_integer_sub(
// &mut self,
// cs: &mut CS,
// scope: String,
// left: IntegerExpression<F>,
// right: IntegerExpression<F>,
// ) -> ResolvedValue<F> {
// let left = self.get_integer_value(cs, scope.clone(), left);
// let right = self.get_integer_value(cs, scope.clone(), right);
//
// match (left, right) {
// (ResolvedValue::U32(left_u32), ResolvedValue::U32(right_u32)) => {
// Self::enforce_u32_sub_old(cs, left_u32, right_u32)
// }
// (left_int, right_int) => {
// unimplemented!("add not impl between {} + {}", left_int, right_int)
// }
// }
// }
// fn enforce_u32_mul_old(cs: &mut CS, left: UInt32, right: UInt32) -> ResolvedValue<F> {
// ResolvedValue::U32(
// left.mul(
// cs.ns(|| format!("enforce {} * {}", left.value.unwrap(), right.value.unwrap())),
// &right,
// )
// .unwrap(),
// )
// }
//
// fn enforce_integer_mul(
// &mut self,
// cs: &mut CS,
// scope: String,
// left: IntegerExpression<F>,
// right: IntegerExpression<F>,
// ) -> ResolvedValue<F> {
// let left = self.get_integer_value(cs, scope.clone(), left);
// let right = self.get_integer_value(cs, scope.clone(), right);
//
// match (left, right) {
// (ResolvedValue::U32(left_u32), ResolvedValue::U32(right_u32)) => {
// Self::enforce_u32_mul_old(cs, left_u32, right_u32)
// }
// (left_int, right_int) => {
// unimplemented!("add not impl between {} + {}", left_int, right_int)
// }
// }
// }
//
// fn enforce_u32_div_old(cs: &mut CS, left: UInt32, right: UInt32) -> ResolvedValue<F> {
// ResolvedValue::U32(
// left.div(
// cs.ns(|| format!("enforce {} / {}", left.value.unwrap(), right.value.unwrap())),
// &right,
// )
// .unwrap(),
// )
// }
//
// fn enforce_integer_div(
// &mut self,
// cs: &mut CS,
// scope: String,
// left: IntegerExpression<F>,
// right: IntegerExpression<F>,
// ) -> ResolvedValue<F> {
// let left = self.get_integer_value(cs, scope.clone(), left);
// let right = self.get_integer_value(cs, scope.clone(), right);
//
// match (left, right) {
// (ResolvedValue::U32(left_u32), ResolvedValue::U32(right_u32)) => {
// Self::enforce_u32_div_old(cs, left_u32, right_u32)
// }
// (left_int, right_int) => {
// unimplemented!("add not impl between {} + {}", left_int, right_int)
// }
// }
// }
//
// fn enforce_u32_pow_old(cs: &mut CS, left: UInt32, right: UInt32) -> ResolvedValue<F> {
// ResolvedValue::U32(
// left.pow(
// cs.ns(|| {
// format!(
// "enforce {} ** {}",
// left.value.unwrap(),
// right.value.unwrap()
// )
// }),
// &right,
// )
// .unwrap(),
// )
// }
//
// fn enforce_integer_pow(
// &mut self,
// cs: &mut CS,
// scope: String,
// left: IntegerExpression<F>,
// right: IntegerExpression<F>,
// ) -> ResolvedValue<F> {
// let left = self.get_integer_value(cs, scope.clone(), left);
// let right = self.get_integer_value(cs, scope.clone(), right);
//
// match (left, right) {
// (ResolvedValue::U32(left_u32), ResolvedValue::U32(right_u32)) => {
// Self::enforce_u32_pow_old(cs, left_u32, right_u32)
// }
// (left_int, right_int) => {
// unimplemented!("add not impl between {} + {}", left_int, right_int)
// }
// }
// }
// pub(crate) fn enforce_integer_expression(
// &mut self,
// cs: &mut CS,
// scope: String,
// expression: IntegerExpression<F>,
// ) -> ResolvedValue<F> {
// match expression {
// IntegerExpression::Variable(variable) => self.integer_from_variable(scope, variable),
// IntegerExpression::Number(number) => Self::get_integer_constant(number),
// IntegerExpression::Add(left, right) => {
// self.enforce_integer_add_old(cs, scope, *left, *right)
// }
// IntegerExpression::Sub(left, right) => {
// self.enforce_integer_sub(cs, scope, *left, *right)
// }
// IntegerExpression::Mul(left, right) => {
// self.enforce_integer_mul(cs, scope, *left, *right)
// }
// IntegerExpression::Div(left, right) => {
// self.enforce_integer_div(cs, scope, *left, *right)
// }
// IntegerExpression::Pow(left, right) => {
// self.enforce_integer_pow(cs, scope, *left, *right)
// }
// IntegerExpression::IfElse(first, second, third) => {
// let resolved_first =
// match self.enforce_boolean_expression(cs, scope.clone(), *first) {
// ResolvedValue::Boolean(resolved) => resolved,
// _ => unimplemented!("if else conditional must resolve to boolean"),
// };
//
// if resolved_first.eq(&Boolean::Constant(true)) {
// self.enforce_integer_expression(cs, scope, *second)
// } else {
// self.enforce_integer_expression(cs, scope, *third)
// }
// }
// IntegerExpression::Array(array) => {
// let mut result = vec![];
// array.into_iter().for_each(|element| match *element {
// IntegerSpreadOrExpression::Spread(spread) => match spread {
// IntegerExpression::Variable(variable) => {
// let array_name = new_scope_from_variable(scope.clone(), &variable);
// match self.get(&array_name) {
// Some(value) => match value {
// ResolvedValue::U32Array(array) => result.extend(array.clone()),
// value => unimplemented!(
// "spreads only implemented for arrays, got {}",
// value
// ),
// },
// None => unimplemented!(
// "cannot copy elements from array that does not exist {}",
// variable.name
// ),
// }
// }
// value => {
// unimplemented!("spreads only implemented for arrays, got {}", value)
// }
// },
// IntegerSpreadOrExpression::Expression(expression) => {
// match self.enforce_integer_expression(cs, scope.clone(), expression) {
// ResolvedValue::U32(value) => result.push(value),
// _ => unimplemented!("cannot resolve field"),
// }
// }
// });
// ResolvedValue::U32Array(result)
// }
// }
// }
}

View File

@ -13,11 +13,9 @@ use std::fmt;
#[derive(Clone)]
pub enum ResolvedValue<F: Field + PrimeField> {
U32(UInt32),
U32Array(Vec<UInt32>),
FieldElement(F),
FieldElementArray(Vec<F>),
Boolean(Boolean),
BooleanArray(Vec<Boolean>),
Array(Vec<ResolvedValue<F>>),
StructDefinition(Struct<F>),
StructExpression(Variable<F>, Vec<StructMember<F>>),
Function(Function<F>),
@ -28,17 +26,22 @@ impl<F: Field + PrimeField> ResolvedValue<F> {
pub(crate) fn match_type(&self, ty: &Type<F>) -> bool {
match (self, ty) {
(ResolvedValue::U32(ref _a), Type::U32) => true,
(ResolvedValue::U32Array(ref arr), Type::Array(ref arr_type, ref len)) => {
(arr.len() == *len) & (**arr_type == Type::U32)
}
(ResolvedValue::FieldElement(ref _a), Type::FieldElement) => true,
(ResolvedValue::FieldElementArray(ref arr), Type::Array(ref arr_type, ref len)) => {
(arr.len() == *len) & (**arr_type == Type::FieldElement)
}
(ResolvedValue::Boolean(ref _a), Type::Boolean) => true,
(ResolvedValue::BooleanArray(ref arr), Type::Array(ref arr_type, ref len)) => {
(arr.len() == *len) & (**arr_type == Type::Boolean)
}
(ResolvedValue::Array(ref _arr), Type::Array(ref _ty, ref _len)) => true, // todo: add array types
// (ResolvedValue::U32Array(ref arr), Type::Array(ref arr_type, ref len)) => {
// (arr.len() == *len) & (**arr_type == Type::U32)
// }
// (ResolvedValue::FieldElementArray(ref arr), Type::Array(ref arr_type, ref len)) => {
// (arr.len() == *len) & (**arr_type == Type::FieldElement)
// }
// (ResolvedValue::BooleanArray(ref arr), Type::Array(ref arr_type, ref len)) => {
// (arr.len() == *len) & (**arr_type == Type::Boolean)
// }
(
ResolvedValue::StructExpression(ref actual_name, ref _members),
Type::Struct(ref expected_name),
) => actual_name == expected_name,
(ResolvedValue::Return(ref values), ty) => {
let mut res = true;
for value in values {
@ -55,18 +58,9 @@ impl<F: Field + PrimeField> fmt::Display for ResolvedValue<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ResolvedValue::U32(ref value) => write!(f, "{}", value.value.unwrap()),
ResolvedValue::U32Array(ref array) => {
write!(f, "[")?;
for (i, e) in array.iter().enumerate() {
write!(f, "{}", e.value.unwrap())?;
if i < array.len() - 1 {
write!(f, ", ")?;
}
}
write!(f, "]")
}
ResolvedValue::FieldElement(ref value) => write!(f, "{}", value),
ResolvedValue::FieldElementArray(ref array) => {
ResolvedValue::Boolean(ref value) => write!(f, "{}", value.get_value().unwrap()),
ResolvedValue::Array(ref array) => {
write!(f, "[")?;
for (i, e) in array.iter().enumerate() {
write!(f, "{}", e)?;
@ -76,17 +70,36 @@ impl<F: Field + PrimeField> fmt::Display for ResolvedValue<F> {
}
write!(f, "]")
}
ResolvedValue::Boolean(ref value) => write!(f, "{}", value.get_value().unwrap()),
ResolvedValue::BooleanArray(ref array) => {
write!(f, "[")?;
for (i, e) in array.iter().enumerate() {
write!(f, "{}", e.get_value().unwrap())?;
if i < array.len() - 1 {
write!(f, ", ")?;
}
}
write!(f, "]")
}
// ResolvedValue::U32Array(ref array) => {
// write!(f, "[")?;
// for (i, e) in array.iter().enumerate() {
// write!(f, "{}", e.value.unwrap())?;
// if i < array.len() - 1 {
// write!(f, ", ")?;
// }
// }
// write!(f, "]")
// }
// ResolvedValue::FieldElementArray(ref array) => {
// write!(f, "[")?;
// for (i, e) in array.iter().enumerate() {
// write!(f, "{}", e)?;
// if i < array.len() - 1 {
// write!(f, ", ")?;
// }
// }
// write!(f, "]")
// }
// ResolvedValue::BooleanArray(ref array) => {
// write!(f, "[")?;
// for (i, e) in array.iter().enumerate() {
// write!(f, "{}", e.get_value().unwrap())?;
// if i < array.len() - 1 {
// write!(f, ", ")?;
// }
// }
// write!(f, "]")
// }
ResolvedValue::StructExpression(ref variable, ref members) => {
write!(f, "{} {{", variable)?;
for (i, member) in members.iter().enumerate() {

View File

@ -5,9 +5,7 @@
//! @date 2020
use crate::program::constraints::{new_scope_from_variable, ResolvedProgram, ResolvedValue};
use crate::program::{
Assignee, Expression, IntegerExpression, IntegerRangeOrExpression, Statement, Type, Variable,
};
use crate::program::{Assignee, Expression, Integer, RangeOrExpression, Statement, Type, Variable};
use snarkos_models::curves::{Field, PrimeField};
use snarkos_models::gadgets::{r1cs::ConstraintSystem, utilities::uint32::UInt32};
@ -50,17 +48,14 @@ impl<F: Field + PrimeField, CS: ConstraintSystem<F>> ResolvedProgram<F, CS> {
// Resolve index so we know if we are assigning to a single value or a range of values
match index_expression {
IntegerRangeOrExpression::Expression(index) => {
RangeOrExpression::Expression(index) => {
let index = self.enforce_index(cs, scope.clone(), index);
// Modify the single value of the array in place
match self.get_mut(&expected_array_name) {
Some(value) => match (value, result) {
(ResolvedValue::U32Array(old), ResolvedValue::U32(new)) => {
old[index] = new.to_owned();
}
(ResolvedValue::BooleanArray(old), ResolvedValue::Boolean(new)) => {
old[index] = new.to_owned();
Some(value) => match value {
ResolvedValue::Array(old) => {
old[index] = result.to_owned();
}
_ => {
unimplemented!("Cannot assign single index to array of values ")
@ -72,29 +67,20 @@ impl<F: Field + PrimeField, CS: ConstraintSystem<F>> ResolvedProgram<F, CS> {
),
}
}
IntegerRangeOrExpression::Range(from, to) => {
RangeOrExpression::Range(from, to) => {
let from_index = match from {
Some(expression) => self.enforce_index(cs, scope.clone(), expression),
Some(integer) => integer.to_usize(),
None => 0usize,
};
let to_index_option = match to {
Some(expression) => {
Some(self.enforce_index(cs, scope.clone(), expression))
}
Some(integer) => Some(integer.to_usize()),
None => None,
};
// Modify the range of values of the array in place
match self.get_mut(&expected_array_name) {
Some(value) => match (value, result) {
(ResolvedValue::U32Array(old), ResolvedValue::U32Array(new)) => {
let to_index = to_index_option.unwrap_or(old.len());
old.splice(from_index..to_index, new.iter().cloned());
}
(
ResolvedValue::BooleanArray(old),
ResolvedValue::BooleanArray(new),
) => {
(ResolvedValue::Array(old), ResolvedValue::Array(new)) => {
let to_index = to_index_option.unwrap_or(old.len());
old.splice(from_index..to_index, new.iter().cloned());
}
@ -192,14 +178,11 @@ impl<F: Field + PrimeField, CS: ConstraintSystem<F>> ResolvedProgram<F, CS> {
cs: &mut CS,
scope: String,
index: Variable<F>,
start: IntegerExpression<F>,
stop: IntegerExpression<F>,
start: Integer,
stop: Integer,
statements: Vec<Statement<F>>,
) {
let start_index = self.enforce_index(cs, scope.clone(), start);
let stop_index = self.enforce_index(cs, scope.clone(), stop);
for i in start_index..stop_index {
for i in start.to_usize()..stop.to_usize() {
// Store index in current function scope.
// For loop scope is not implemented.
let index_name = new_scope_from_variable(scope.clone(), &index);

View File

@ -26,122 +26,80 @@ pub enum Integer {
// U64(u64),
}
/// Spread operator or u32 expression enum
#[derive(Debug, Clone)]
pub enum IntegerSpreadOrExpression<F: Field + PrimeField> {
Spread(IntegerExpression<F>),
Expression(IntegerExpression<F>),
impl Integer {
pub fn to_usize(&self) -> usize {
match *self {
// U8(u8)
Integer::U32(num) => num as usize, // U64(u64)
}
}
}
/// Range or integer expression enum
/// Range or expression enum
#[derive(Debug, Clone)]
pub enum IntegerRangeOrExpression<F: Field + PrimeField> {
Range(Option<IntegerExpression<F>>, Option<IntegerExpression<F>>),
Expression(IntegerExpression<F>),
pub enum RangeOrExpression<F: Field + PrimeField> {
Range(Option<Integer>, Option<Integer>),
Expression(Expression<F>),
}
/// Expression that evaluates to a u32 value
/// Spread or expression
#[derive(Debug, Clone)]
pub enum IntegerExpression<F: Field + PrimeField> {
Variable(Variable<F>),
Number(Integer),
// Operators
Add(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
Sub(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
Mul(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
Div(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
Pow(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
// Conditionals
IfElse(
Box<BooleanExpression<F>>,
Box<IntegerExpression<F>>,
Box<IntegerExpression<F>>,
),
// Arrays
Array(Vec<Box<IntegerSpreadOrExpression<F>>>),
}
/// Spread or field expression enum
#[derive(Debug, Clone)]
pub enum FieldSpreadOrExpression<F: Field + PrimeField> {
Spread(FieldExpression<F>),
Expression(FieldExpression<F>),
}
/// Expression that evaluates to a field value
#[derive(Debug, Clone)]
pub enum FieldExpression<F: Field + PrimeField> {
Variable(Variable<F>),
Number(F),
// Operators
Add(Box<FieldExpression<F>>, Box<FieldExpression<F>>),
Sub(Box<FieldExpression<F>>, Box<FieldExpression<F>>),
Mul(Box<FieldExpression<F>>, Box<FieldExpression<F>>),
Div(Box<FieldExpression<F>>, Box<FieldExpression<F>>),
Pow(Box<FieldExpression<F>>, Box<FieldExpression<F>>),
// Conditionals
IfElse(
Box<BooleanExpression<F>>,
Box<FieldExpression<F>>,
Box<FieldExpression<F>>,
),
// Arrays
Array(Vec<Box<FieldSpreadOrExpression<F>>>),
}
/// Spread or field expression enum
#[derive(Debug, Clone)]
pub enum BooleanSpreadOrExpression<F: Field + PrimeField> {
Spread(BooleanExpression<F>),
Expression(BooleanExpression<F>),
}
/// Expression that evaluates to a boolean value
#[derive(Debug, Clone)]
pub enum BooleanExpression<F: Field + PrimeField> {
Variable(Variable<F>),
Value(bool),
// Boolean operators
Not(Box<BooleanExpression<F>>),
Or(Box<BooleanExpression<F>>, Box<BooleanExpression<F>>),
And(Box<BooleanExpression<F>>, Box<BooleanExpression<F>>),
BoolEq(Box<BooleanExpression<F>>, Box<BooleanExpression<F>>),
// Integer operators
IntegerEq(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
Geq(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
Gt(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
Leq(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
Lt(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
// Field operators
FieldEq(Box<FieldExpression<F>>, Box<FieldExpression<F>>),
// Conditionals
IfElse(
Box<BooleanExpression<F>>,
Box<BooleanExpression<F>>,
Box<BooleanExpression<F>>,
),
// Arrays
Array(Vec<Box<BooleanSpreadOrExpression<F>>>),
pub enum SpreadOrExpression<F: Field + PrimeField> {
Spread(Expression<F>),
Expression(Expression<F>),
}
/// Expression that evaluates to a value
#[derive(Debug, Clone)]
pub enum Expression<F: Field + PrimeField> {
Integer(IntegerExpression<F>),
FieldElement(FieldExpression<F>),
Boolean(BooleanExpression<F>),
// Variable
Variable(Variable<F>),
// Values
Integer(Integer),
FieldElement(F),
Boolean(bool),
// Number operations
Add(Box<Expression<F>>, Box<Expression<F>>),
Sub(Box<Expression<F>>, Box<Expression<F>>),
Mul(Box<Expression<F>>, Box<Expression<F>>),
Div(Box<Expression<F>>, Box<Expression<F>>),
Pow(Box<Expression<F>>, Box<Expression<F>>),
// Boolean operations
Not(Box<Expression<F>>),
Or(Box<Expression<F>>, Box<Expression<F>>),
And(Box<Expression<F>>, Box<Expression<F>>),
Eq(Box<Expression<F>>, Box<Expression<F>>),
Geq(Box<Expression<F>>, Box<Expression<F>>),
Gt(Box<Expression<F>>, Box<Expression<F>>),
Leq(Box<Expression<F>>, Box<Expression<F>>),
Lt(Box<Expression<F>>, Box<Expression<F>>),
// Conditionals
IfElse(Box<Expression<F>>, Box<Expression<F>>, Box<Expression<F>>),
// Arrays
Array(Vec<Box<SpreadOrExpression<F>>>),
ArrayAccess(Box<Expression<F>>, Box<RangeOrExpression<F>>),
// Structs
Struct(Variable<F>, Vec<StructMember<F>>),
ArrayAccess(Box<Expression<F>>, IntegerRangeOrExpression<F>),
StructMemberAccess(Box<Expression<F>>, Variable<F>), // (struct name, struct member name)
// Functions
FunctionCall(Box<Expression<F>>, Vec<Expression<F>>),
// IntegerExp(IntegerExpression<F>),
// FieldElementExp(FieldExpression<F>),
// BooleanExp(BooleanExpression<F>),
}
/// Definition assignee: v, arr[0..2], Point p.x
#[derive(Debug, Clone)]
pub enum Assignee<F: Field + PrimeField> {
Variable(Variable<F>),
Array(Box<Assignee<F>>, IntegerRangeOrExpression<F>),
Array(Box<Assignee<F>>, RangeOrExpression<F>),
StructMember(Box<Assignee<F>>, Variable<F>),
}
@ -150,12 +108,7 @@ pub enum Assignee<F: Field + PrimeField> {
pub enum Statement<F: Field + PrimeField> {
// Declaration(Variable),
Definition(Assignee<F>, Expression<F>),
For(
Variable<F>,
IntegerExpression<F>,
IntegerExpression<F>,
Vec<Statement<F>>,
),
For(Variable<F>, Integer, Integer, Vec<Statement<F>>),
Return(Vec<Expression<F>>),
}
@ -232,3 +185,95 @@ impl<'ast, F: Field + PrimeField> Program<'ast, F> {
self
}
}
// /// Spread operator or u32 expression enum
// #[derive(Debug, Clone)]
// pub enum IntegerSpreadOrExpression<F: Field + PrimeField> {
// Spread(IntegerExpression<F>),
// Expression(IntegerExpression<F>),
// }
// Expression that evaluates to a u32 value
// #[derive(Debug, Clone)]
// pub enum IntegerExpression<F: Field + PrimeField> {
// Variable(Variable<F>),
// Number(Integer),
// Operators
// Add(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
// Sub(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
// Mul(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
// Div(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
// Pow(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
// Conditionals
// IfElse(
// Box<BooleanExpression<F>>,
// Box<IntegerExpression<F>>,
// Box<IntegerExpression<F>>,
// ),
// Arrays
// Array(Vec<Box<IntegerSpreadOrExpression<F>>>),
// // Unresolved
// Unresolved(Box<Expression<F>>) // placeholder for array/struct access, function calls
// }
// /// Spread or field expression enum
// #[derive(Debug, Clone)]
// pub enum FieldSpreadOrExpression<F: Field + PrimeField> {
// Spread(FieldExpression<F>),
// Expression(FieldExpression<F>),
// }
// /// Expression that evaluates to a field value
// #[derive(Debug, Clone)]
// pub enum FieldExpression<F: Field + PrimeField> {
// Variable(Variable<F>),
// Number(F),
// Operators
// Add(Box<FieldExpression<F>>, Box<FieldExpression<F>>),
// Sub(Box<FieldExpression<F>>, Box<FieldExpression<F>>),
// Mul(Box<FieldExpression<F>>, Box<FieldExpression<F>>),
// Div(Box<FieldExpression<F>>, Box<FieldExpression<F>>),
// Pow(Box<FieldExpression<F>>, Box<FieldExpression<F>>),
// Conditionals
// IfElse(
// Box<BooleanExpression<F>>,
// Box<FieldExpression<F>>,
// Box<FieldExpression<F>>,
// ),
// Arrays
// Array(Vec<Box<FieldSpreadOrExpression<F>>>),
// }
// /// Spread or field expression enum
// #[derive(Debug, Clone)]
// pub enum BooleanSpreadOrExpression<F: Field + PrimeField> {
// Spread(BooleanExpression<F>),
// Expression(BooleanExpression<F>),
// }
// Expression that evaluates to a boolean value
// #[derive(Debug, Clone)]
// pub enum BooleanExpression<F: Field + PrimeField> {
// Variable(Variable<F>),
// Value(bool),
// Boolean operators
// Or(Box<BooleanExpression<F>>, Box<BooleanExpression<F>>),
// And(Box<BooleanExpression<F>>, Box<BooleanExpression<F>>),
// BoolEq(Box<BooleanExpression<F>>, Box<BooleanExpression<F>>),
// // Integer operators
// IntegerEq(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
// Geq(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
// Gt(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
// Leq(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
// Lt(Box<IntegerExpression<F>>, Box<IntegerExpression<F>>),
// // Field operators
// FieldEq(Box<FieldExpression<F>>, Box<FieldExpression<F>>),
// Conditionals
// IfElse(
// Box<BooleanExpression<F>>,
// Box<BooleanExpression<F>>,
// Box<BooleanExpression<F>>,
// ),
// Arrays
// Array(Vec<Box<BooleanSpreadOrExpression<F>>>),
// }

View File

@ -5,10 +5,8 @@
//! @date 2020
use crate::program::{
Assignee, BooleanExpression, BooleanSpreadOrExpression, Expression, FieldExpression,
FieldSpreadOrExpression, Function, FunctionName, Integer, IntegerExpression,
IntegerRangeOrExpression, IntegerSpreadOrExpression, Parameter, Statement, Struct, StructField,
Type, Variable,
Assignee, Expression, Function, FunctionName, Integer, Parameter, RangeOrExpression,
SpreadOrExpression, Statement, Struct, StructField, Type, Variable,
};
use snarkos_models::curves::{Field, PrimeField};
@ -33,132 +31,29 @@ impl fmt::Display for Integer {
}
}
impl<F: Field + PrimeField> fmt::Display for IntegerSpreadOrExpression<F> {
impl<'ast, F: Field + PrimeField> fmt::Display for RangeOrExpression<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
IntegerSpreadOrExpression::Spread(ref spread) => write!(f, "...{}", spread),
IntegerSpreadOrExpression::Expression(ref expression) => write!(f, "{}", expression),
}
}
}
impl<'ast, F: Field + PrimeField> fmt::Display for IntegerRangeOrExpression<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
IntegerRangeOrExpression::Range(ref from, ref to) => write!(
RangeOrExpression::Range(ref from, ref to) => write!(
f,
"{}..{}",
from.as_ref()
.map(|e| e.to_string())
.map(|e| format!("{}", e))
.unwrap_or("".to_string()),
to.as_ref().map(|e| e.to_string()).unwrap_or("".to_string())
to.as_ref()
.map(|e| format!("{}", e))
.unwrap_or("".to_string())
),
IntegerRangeOrExpression::Expression(ref e) => write!(f, "{}", e),
RangeOrExpression::Expression(ref e) => write!(f, "{}", e),
}
}
}
impl<'ast, F: Field + PrimeField> fmt::Display for IntegerExpression<F> {
impl<F: Field + PrimeField> fmt::Display for SpreadOrExpression<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
IntegerExpression::Variable(ref variable) => write!(f, "{}", variable),
IntegerExpression::Number(ref number) => write!(f, "{}", number),
IntegerExpression::Add(ref lhs, ref rhs) => write!(f, "{} + {}", lhs, rhs),
IntegerExpression::Sub(ref lhs, ref rhs) => write!(f, "{} - {}", lhs, rhs),
IntegerExpression::Mul(ref lhs, ref rhs) => write!(f, "{} * {}", lhs, rhs),
IntegerExpression::Div(ref lhs, ref rhs) => write!(f, "{} / {}", lhs, rhs),
IntegerExpression::Pow(ref lhs, ref rhs) => write!(f, "{} ** {}", lhs, rhs),
IntegerExpression::IfElse(ref a, ref b, ref c) => {
write!(f, "if {} then {} else {} fi", a, b, c)
}
IntegerExpression::Array(ref array) => {
write!(f, "[")?;
for (i, e) in array.iter().enumerate() {
write!(f, "{}", e)?;
if i < array.len() - 1 {
write!(f, ", ")?;
}
}
write!(f, "]")
}
}
}
}
impl<F: Field + PrimeField> fmt::Display for FieldSpreadOrExpression<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
FieldSpreadOrExpression::Spread(ref spread) => write!(f, "...{}", spread),
FieldSpreadOrExpression::Expression(ref expression) => write!(f, "{}", expression),
}
}
}
impl<'ast, F: Field + PrimeField> fmt::Display for FieldExpression<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
FieldExpression::Variable(ref variable) => write!(f, "{}", variable),
FieldExpression::Number(ref number) => write!(f, "{}", number),
FieldExpression::Add(ref lhs, ref rhs) => write!(f, "{} + {}", lhs, rhs),
FieldExpression::Sub(ref lhs, ref rhs) => write!(f, "{} - {}", lhs, rhs),
FieldExpression::Mul(ref lhs, ref rhs) => write!(f, "{} * {}", lhs, rhs),
FieldExpression::Div(ref lhs, ref rhs) => write!(f, "{} / {}", lhs, rhs),
FieldExpression::Pow(ref lhs, ref rhs) => write!(f, "{} ** {}", lhs, rhs),
FieldExpression::IfElse(ref a, ref b, ref c) => {
write!(f, "if {} then {} else {} fi", a, b, c)
}
FieldExpression::Array(ref array) => {
write!(f, "[")?;
for (i, e) in array.iter().enumerate() {
write!(f, "{}", e)?;
if i < array.len() - 1 {
write!(f, ", ")?;
}
}
write!(f, "]")
} // _ => unimplemented!("not all field expressions can be displayed")
}
}
}
impl<F: Field + PrimeField> fmt::Display for BooleanSpreadOrExpression<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
BooleanSpreadOrExpression::Spread(ref spread) => write!(f, "...{}", spread),
BooleanSpreadOrExpression::Expression(ref expression) => write!(f, "{}", expression),
}
}
}
impl<'ast, F: Field + PrimeField> fmt::Display for BooleanExpression<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
BooleanExpression::Variable(ref variable) => write!(f, "{}", variable),
BooleanExpression::Value(ref value) => write!(f, "{}", value),
BooleanExpression::Not(ref expression) => write!(f, "!{}", expression),
BooleanExpression::Or(ref lhs, ref rhs) => write!(f, "{} || {}", lhs, rhs),
BooleanExpression::And(ref lhs, ref rhs) => write!(f, "{} && {}", lhs, rhs),
BooleanExpression::BoolEq(ref lhs, ref rhs) => write!(f, "{} == {}", lhs, rhs),
BooleanExpression::IntegerEq(ref lhs, ref rhs) => write!(f, "{} == {}", lhs, rhs),
BooleanExpression::FieldEq(ref lhs, ref rhs) => write!(f, "{} == {}", lhs, rhs),
// BooleanExpression::Neq(ref lhs, ref rhs) => write!(f, "{} != {}", lhs, rhs),
BooleanExpression::Geq(ref lhs, ref rhs) => write!(f, "{} >= {}", lhs, rhs),
BooleanExpression::Gt(ref lhs, ref rhs) => write!(f, "{} > {}", lhs, rhs),
BooleanExpression::Leq(ref lhs, ref rhs) => write!(f, "{} <= {}", lhs, rhs),
BooleanExpression::Lt(ref lhs, ref rhs) => write!(f, "{} < {}", lhs, rhs),
BooleanExpression::IfElse(ref a, ref b, ref c) => {
write!(f, "if {} then {} else {} fi", a, b, c)
}
BooleanExpression::Array(ref array) => {
write!(f, "[")?;
for (i, e) in array.iter().enumerate() {
write!(f, "{}", e)?;
if i < array.len() - 1 {
write!(f, ", ")?;
}
}
write!(f, "]")
}
SpreadOrExpression::Spread(ref spread) => write!(f, "...{}", spread),
SpreadOrExpression::Expression(ref expression) => write!(f, "{}", expression),
}
}
}
@ -166,10 +61,48 @@ impl<'ast, F: Field + PrimeField> fmt::Display for BooleanExpression<F> {
impl<'ast, F: Field + PrimeField> fmt::Display for Expression<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Expression::Integer(ref integer_expression) => write!(f, "{}", integer_expression),
Expression::FieldElement(ref field_expression) => write!(f, "{}", field_expression),
Expression::Boolean(ref boolean_expression) => write!(f, "{}", boolean_expression),
// Variables
Expression::Variable(ref variable) => write!(f, "{}", variable),
// Values
Expression::Integer(ref integer) => write!(f, "{}", integer),
Expression::FieldElement(ref fe) => write!(f, "{}", fe),
Expression::Boolean(ref bool) => write!(f, "{}", bool),
// Number operations
Expression::Add(ref left, ref right) => write!(f, "{} + {}", left, right),
Expression::Sub(ref left, ref right) => write!(f, "{} - {}", left, right),
Expression::Mul(ref left, ref right) => write!(f, "{} * {}", left, right),
Expression::Div(ref left, ref right) => write!(f, "{} / {}", left, right),
Expression::Pow(ref left, ref right) => write!(f, "{} ** {}", left, right),
// Boolean operations
Expression::Not(ref expression) => write!(f, "!{}", expression),
Expression::Or(ref lhs, ref rhs) => write!(f, "{} || {}", lhs, rhs),
Expression::And(ref lhs, ref rhs) => write!(f, "{} && {}", lhs, rhs),
Expression::Eq(ref lhs, ref rhs) => write!(f, "{} == {}", lhs, rhs),
Expression::Geq(ref lhs, ref rhs) => write!(f, "{} >= {}", lhs, rhs),
Expression::Gt(ref lhs, ref rhs) => write!(f, "{} > {}", lhs, rhs),
Expression::Leq(ref lhs, ref rhs) => write!(f, "{} <= {}", lhs, rhs),
Expression::Lt(ref lhs, ref rhs) => write!(f, "{} < {}", lhs, rhs),
// Conditionals
Expression::IfElse(ref first, ref second, ref third) => {
write!(f, "if {} then {} else {} fi", first, second, third)
}
Expression::Array(ref array) => {
write!(f, "[")?;
for (i, e) in array.iter().enumerate() {
write!(f, "{}", e)?;
if i < array.len() - 1 {
write!(f, ", ")?;
}
}
write!(f, "]")
}
Expression::ArrayAccess(ref array, ref index) => write!(f, "{}[{}]", array, index),
Expression::Struct(ref var, ref members) => {
write!(f, "{} {{", var)?;
for (i, member) in members.iter().enumerate() {
@ -180,7 +113,6 @@ impl<'ast, F: Field + PrimeField> fmt::Display for Expression<F> {
}
write!(f, "}}")
}
Expression::ArrayAccess(ref array, ref index) => write!(f, "{}[{}]", array, index),
Expression::StructMemberAccess(ref struct_variable, ref member) => {
write!(f, "{}.{}", struct_variable, member)
}
@ -350,3 +282,117 @@ impl<F: Field + PrimeField> fmt::Debug for Function<F> {
)
}
}
// impl<F: Field + PrimeField> fmt::Display for IntegerSpreadOrExpression<F> {
// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// match *self {
// IntegerSpreadOrExpression::Spread(ref spread) => write!(f, "...{}", spread),
// IntegerSpreadOrExpression::Expression(ref expression) => write!(f, "{}", expression),
// }
// }
// }
// impl<'ast, F: Field + PrimeField> fmt::Display for IntegerExpression<F> {
// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// match *self {
// IntegerExpression::Variable(ref variable) => write!(f, "{}", variable),
// IntegerExpression::Number(ref number) => write!(f, "{}", number),
// IntegerExpression::Add(ref lhs, ref rhs) => write!(f, "{} + {}", lhs, rhs),
// IntegerExpression::Sub(ref lhs, ref rhs) => write!(f, "{} - {}", lhs, rhs),
// IntegerExpression::Mul(ref lhs, ref rhs) => write!(f, "{} * {}", lhs, rhs),
// IntegerExpression::Div(ref lhs, ref rhs) => write!(f, "{} / {}", lhs, rhs),
// IntegerExpression::Pow(ref lhs, ref rhs) => write!(f, "{} ** {}", lhs, rhs),
// IntegerExpression::IfElse(ref a, ref b, ref c) => {
// write!(f, "if {} then {} else {} fi", a, b, c)
// }
// IntegerExpression::Array(ref array) => {
// write!(f, "[")?;
// for (i, e) in array.iter().enumerate() {
// write!(f, "{}", e)?;
// if i < array.len() - 1 {
// write!(f, ", ")?;
// }
// }
// write!(f, "]")
// }
// }
// }
// }
// impl<F: Field + PrimeField> fmt::Display for FieldSpreadOrExpression<F> {
// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// match *self {
// FieldSpreadOrExpression::Spread(ref spread) => write!(f, "...{}", spread),
// FieldSpreadOrExpression::Expression(ref expression) => write!(f, "{}", expression),
// }
// }
// }
//
// impl<'ast, F: Field + PrimeField> fmt::Display for FieldExpression<F> {
// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// match *self {
// FieldExpression::Variable(ref variable) => write!(f, "{}", variable),
// FieldExpression::Number(ref number) => write!(f, "{}", number),
// FieldExpression::Add(ref lhs, ref rhs) => write!(f, "{} + {}", lhs, rhs),
// FieldExpression::Sub(ref lhs, ref rhs) => write!(f, "{} - {}", lhs, rhs),
// FieldExpression::Mul(ref lhs, ref rhs) => write!(f, "{} * {}", lhs, rhs),
// FieldExpression::Div(ref lhs, ref rhs) => write!(f, "{} / {}", lhs, rhs),
// FieldExpression::Pow(ref lhs, ref rhs) => write!(f, "{} ** {}", lhs, rhs),
// FieldExpression::IfElse(ref a, ref b, ref c) => {
// write!(f, "if {} then {} else {} fi", a, b, c)
// }
// FieldExpression::Array(ref array) => {
// write!(f, "[")?;
// for (i, e) in array.iter().enumerate() {
// write!(f, "{}", e)?;
// if i < array.len() - 1 {
// write!(f, ", ")?;
// }
// }
// write!(f, "]")
// } // _ => unimplemented!("not all field expressions can be displayed")
// }
// }
// }
// impl<F: Field + PrimeField> fmt::Display for BooleanSpreadOrExpression<F> {
// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// match *self {
// BooleanSpreadOrExpression::Spread(ref spread) => write!(f, "...{}", spread),
// BooleanSpreadOrExpression::Expression(ref expression) => write!(f, "{}", expression),
// }
// }
// }
// impl<'ast, F: Field + PrimeField> fmt::Display for BooleanExpression<F> {
// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// match *self {
// BooleanExpression::Variable(ref variable) => write!(f, "{}", variable),
// BooleanExpression::Value(ref value) => write!(f, "{}", value),
// BooleanExpression::Not(ref expression) => write!(f, "!{}", expression),
// BooleanExpression::Or(ref lhs, ref rhs) => write!(f, "{} || {}", lhs, rhs),
// BooleanExpression::And(ref lhs, ref rhs) => write!(f, "{} && {}", lhs, rhs),
// BooleanExpression::BoolEq(ref lhs, ref rhs) => write!(f, "{} == {}", lhs, rhs),
// BooleanExpression::IntegerEq(ref lhs, ref rhs) => write!(f, "{} == {}", lhs, rhs),
// BooleanExpression::FieldEq(ref lhs, ref rhs) => write!(f, "{} == {}", lhs, rhs),
// // BooleanExpression::Neq(ref lhs, ref rhs) => write!(f, "{} != {}", lhs, rhs),
// BooleanExpression::Geq(ref lhs, ref rhs) => write!(f, "{} >= {}", lhs, rhs),
// BooleanExpression::Gt(ref lhs, ref rhs) => write!(f, "{} > {}", lhs, rhs),
// BooleanExpression::Leq(ref lhs, ref rhs) => write!(f, "{} <= {}", lhs, rhs),
// BooleanExpression::Lt(ref lhs, ref rhs) => write!(f, "{} < {}", lhs, rhs),
// BooleanExpression::IfElse(ref a, ref b, ref c) => {
// write!(f, "if {} then {} else {} fi", a, b, c)
// }
// BooleanExpression::Array(ref array) => {
// write!(f, "[")?;
// for (i, e) in array.iter().enumerate() {
// write!(f, "{}", e)?;
// if i < array.len() - 1 {
// write!(f, ", ")?;
// }
// }
// write!(f, "]")
// }
// }
// }
// }

File diff suppressed because it is too large Load Diff