fix recursive circuit member function namespace bug

This commit is contained in:
collin 2020-07-03 22:44:09 -07:00
parent 3f10bcfe82
commit 84f634559c
6 changed files with 134 additions and 82 deletions

View File

@ -205,6 +205,7 @@ In the underlying circuit this can be thought of as a demultiplexer.
```rust
function main(a: bool, b: bool) -> u32 {
let mut res = 0u32;
if a {
res = 1;
} else if b {
@ -212,6 +213,7 @@ function main(a: bool, b: bool) -> u32 {
} else {
res = 3;
}
return res
}
```
@ -299,8 +301,8 @@ function main() -> u32 {
## Circuits
Circuits in Leo are similar to classes in object oriented langauges. Circuits are defined above functions in a Leo program. Circuits can have one or more members.
Members can be defined as fields which hold primitive values
#### Circuit member values
Members can be defined as fields which hold primitive values.
```rust
circuit Point {
x: u32
@ -312,51 +314,73 @@ function main() -> u32 {
}
```
#### Circuit member functions
Members can also be defined as functions.
```rust
circuit Circ {
circuit Foo {
function echo(x: u32) -> u32 {
return x
}
}
function main() -> u32 {
let c = Circ { };
let c = Foo { };
return c.echo(1u32)
}
```
#### Circuit member static functions
Circuit functions can be made static, enabling them to be called without instantiation.
```rust
circuit Circ {
circuit Foo {
static function echo(x: u32) -> u32 {
return x
}
}
function main() -> u32 {
return Circ::echo(1u32)
return Foo::echo(1u32)
}
```
The `Self` keyword is supported in circuit functions.
#### `Self` and `self`
The `Self` keyword references the circuit definition.
```rust
circuit Circ {
circuit Foo {
b: bool
static function new() -> Self {
static function new() -> Self { // Self resolves to Foo
return Self { b: true }
}
}
function main() -> Circ {
let c = Circ::new();
function main() -> bool {
let c = Foo::new();
return c.b
}
```
The `self` keyword references the circuit's members.
```rust
circuit Foo {
b: bool
function bar() -> bool {
return self.b
}
}
function main() -> bool {
let c = Foo { b: true };
return c.b
}
```
## Imports
Leo supports importing functions and circuits by name into the current file with the following syntax:
Leo supports importing functions
}
} and circuits by name into the current file with the following syntax:
```rust
import [package].[name];

View File

@ -704,9 +704,11 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
// access a circuit member using the `self` keyword
if let Expression::Identifier(ref identifier) = *circuit_identifier {
if identifier.is_self() {
let self_keyword = new_scope(function_scope, SELF_KEYWORD.to_string());
let self_file_scope = new_scope(file_scope.clone(), identifier.name.to_string());
let self_function_scope = new_scope(self_file_scope.clone(), identifier.name.to_string());
let member_value =
self.evaluate_identifier(file_scope, self_keyword, &vec![], circuit_member.clone())?;
self.evaluate_identifier(self_file_scope, self_function_scope, &vec![], circuit_member.clone())?;
return Ok(member_value);
}
@ -730,22 +732,15 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
Some(member) => {
match &member.1 {
ConstrainedValue::Function(ref _circuit_identifier, ref _function) => {
// Pass static circuit fields into function call by value
// Pass circuit members into function call by value
for stored_member in members {
match &stored_member.1 {
ConstrainedValue::Function(_, _) => {}
ConstrainedValue::Static(_) => {}
_ => {
let circuit_scope = new_scope(file_scope.clone(), circuit_name.to_string());
let function_scope = new_scope(circuit_scope, member.0.to_string());
let self_keyword = new_scope(function_scope, SELF_KEYWORD.to_string());
let self_keyword = new_scope(circuit_scope, SELF_KEYWORD.to_string());
let field = new_scope(self_keyword, stored_member.0.to_string());
self.store(field, stored_member.1.clone());
}
}
}
}
ConstrainedValue::Static(value) => {
return Err(ExpressionError::invalid_static_access(value.to_string(), span));
}
@ -831,7 +826,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
*function.clone(),
)?;
let (outer_scope, function_call) = function_value.extract_function(file_scope, span.clone())?;
let (outer_scope, function_call) = function_value.extract_function(file_scope.clone(), span.clone())?;
let name_unique = format!(
"function call {} {}:{}",

View File

@ -14,6 +14,10 @@ pub fn new_scope(outer: String, inner: String) -> String {
format!("{}_{}", outer, inner)
}
pub fn is_in_scope(current_scope: &String, desired_scope: &String) -> bool {
current_scope.ends_with(desired_scope)
}
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
pub fn new() -> Self {
Self {

View File

@ -3,6 +3,7 @@
use crate::{
constraints::boolean::{allocate_bool, new_bool_constant},
errors::{ExpressionError, FieldError, ValueError},
is_in_scope,
new_scope,
FieldType,
GroupType,
@ -122,8 +123,11 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedValue<F, G> {
ConstrainedValue::Function(circuit_identifier, function) => {
let mut outer_scope = scope.clone();
// If this is a circuit function, evaluate inside the circuit scope
if circuit_identifier.is_some() {
outer_scope = new_scope(scope, circuit_identifier.unwrap().to_string());
if let Some(identifier) = circuit_identifier {
// avoid creating recursive scope
if !is_in_scope(&scope, &identifier.name.to_string()) {
outer_scope = new_scope(scope, identifier.name.to_string());
}
}
Ok((outer_scope, function.clone()))

View File

@ -0,0 +1,17 @@
circuit Foo {
x: u32,
function add_x(y: u32) -> u32 {
return self.x + y
}
function call_add_x(y: u32) -> u32 {
return self.add_x(y)
}
}
function main() -> u32 {
let f = Foo { x: 1u32 };
return f.call_add_x(1u32)
}

View File

@ -1,7 +1,7 @@
use crate::{
get_error,
get_output,
integers::u32::output_one,
integers::u32::{output_number, output_one},
parse_program,
EdwardsConstrainedValue,
EdwardsTestCompiler,
@ -138,6 +138,14 @@ fn test_member_function_invalid() {
expect_fail(program);
}
#[test]
fn test_member_function_nested() {
let bytes = include_bytes!("member_function_nested.leo");
let program = parse_program(bytes).unwrap();
output_number(program, 2u32);
}
#[test]
fn test_member_static_function() {
let bytes = include_bytes!("member_static_function.leo");