merge lib and imports

This commit is contained in:
collin 2020-07-02 15:53:41 -07:00
commit cf4a8772bb
31 changed files with 724 additions and 431 deletions

38
Cargo.lock generated
View File

@ -101,7 +101,7 @@ dependencies = [
"byte-tools",
"crypto-mac",
"digest 0.8.1",
"opaque-debug",
"opaque-debug 0.2.3",
]
[[package]]
@ -118,13 +118,10 @@ dependencies = [
[[package]]
name = "block-buffer"
version = "0.8.0"
version = "0.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dbcf92448676f82bb7a334c58bbce8b0d43580fb5362a9d608b18879d12a3d31"
checksum = "4152116fd6e9dadb291ae18fc1ec3575ed6d84c29642d97890f4b4a3417297e4"
dependencies = [
"block-padding",
"byte-tools",
"byteorder",
"generic-array 0.14.2",
]
@ -217,6 +214,12 @@ dependencies = [
"winapi",
]
[[package]]
name = "cpuid-bool"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6d375c433320f6c5057ae04a04376eef4d04ce2801448cf8863a78da99107be4"
[[package]]
name = "crc32fast"
version = "1.2.0"
@ -685,6 +688,12 @@ version = "0.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2839e79665f131bdb5782e51f2c6c9599c133c6098982a54c794358bf432529c"
[[package]]
name = "opaque-debug"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "624a8340c38c1b80fd549087862da4ba43e08858af025b236e509b6649fc13d5"
[[package]]
name = "pest"
version = "2.1.3"
@ -955,9 +964,9 @@ dependencies = [
[[package]]
name = "serde_json"
version = "1.0.55"
version = "1.0.56"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ec2c5d7e739bc07a3e73381a39d61fdb5f671c60c1df26a130690665803d8226"
checksum = "3433e879a558dde8b5e8feb2a04899cf34fdde1fafb894687e52105fc1162ac3"
dependencies = [
"itoa",
"ryu",
@ -973,19 +982,20 @@ dependencies = [
"block-buffer 0.7.3",
"digest 0.8.1",
"fake-simd",
"opaque-debug",
"opaque-debug 0.2.3",
]
[[package]]
name = "sha2"
version = "0.9.0"
version = "0.9.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "72377440080fd008550fe9b441e854e43318db116f90181eef92e9ae9aedab48"
checksum = "2933378ddfeda7ea26f48c555bdad8bb446bf8a3d17832dc83e380d444cfb8c1"
dependencies = [
"block-buffer 0.8.0",
"block-buffer 0.9.0",
"cfg-if",
"cpuid-bool",
"digest 0.9.0",
"fake-simd",
"opaque-debug",
"opaque-debug 0.3.0",
]
[[package]]

View File

@ -4,6 +4,7 @@ use crate::{
constraints::{generate_constraints, generate_test_constraints, ConstrainedValue},
errors::CompilerError,
GroupType,
ImportedPrograms,
};
use leo_ast::LeoParser;
use leo_inputs::LeoInputsParser;
@ -24,6 +25,7 @@ pub struct Compiler<F: Field + PrimeField, G: GroupType<F>> {
main_file_path: PathBuf,
program: Program,
program_inputs: Inputs,
imported_programs: ImportedPrograms,
output: Option<ConstrainedValue<F, G>>,
_engine: PhantomData<F>,
}
@ -35,6 +37,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> Compiler<F, G> {
main_file_path: PathBuf::new(),
program: Program::new(package_name),
program_inputs: Inputs::new(),
imported_programs: ImportedPrograms::new(),
output: None,
_engine: PhantomData,
}
@ -77,7 +80,9 @@ impl<F: Field + PrimeField, G: GroupType<F>> Compiler<F, G> {
cs: &mut CS,
) -> Result<ConstrainedValue<F, G>, CompilerError> {
let path = self.main_file_path;
generate_constraints(cs, self.program, self.program_inputs.get_inputs()).map_err(|mut error| {
let inputs = self.program_inputs.get_inputs();
generate_constraints(cs, self.program, inputs, &self.imported_programs).map_err(|mut error| {
error.set_path(path);
error
@ -85,7 +90,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> Compiler<F, G> {
}
pub fn compile_test_constraints(self, cs: &mut TestConstraintSystem<F>) -> Result<(), CompilerError> {
generate_test_constraints::<F, G>(cs, self.program)
generate_test_constraints::<F, G>(cs, self.program, &self.imported_programs)
}
fn load_program(&mut self) -> Result<String, CompilerError> {
@ -102,6 +107,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> Compiler<F, G> {
self.program = Program::from(syntax_tree, package_name);
self.program_inputs.set_inputs_size(self.program.expected_inputs.len());
self.imported_programs = ImportedPrograms::from_program(&self.program)?;
log::debug!("Program parsing complete\n{:#?}", self.program);
@ -132,6 +138,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> Compiler<F, G> {
main_file_path: PathBuf::new(),
program,
program_inputs,
imported_programs: ImportedPrograms::new(),
output: None,
_engine: PhantomData,
})
@ -140,11 +147,16 @@ impl<F: Field + PrimeField, G: GroupType<F>> Compiler<F, G> {
impl<F: Field + PrimeField, G: GroupType<F>> ConstraintSynthesizer<F> for Compiler<F, G> {
fn generate_constraints<CS: ConstraintSystem<F>>(self, cs: &mut CS) -> Result<(), SynthesisError> {
let result =
generate_constraints::<_, G, _>(cs, self.program, self.program_inputs.get_inputs()).map_err(|e| {
log::error!("{}", e);
SynthesisError::Unsatisfiable
})?;
let result = generate_constraints::<_, G, _>(
cs,
self.program,
self.program_inputs.get_inputs(),
&self.imported_programs,
)
.map_err(|e| {
log::error!("{}", e);
SynthesisError::Unsatisfiable
})?;
// Write results to file or something
log::info!("{}", result);

View File

@ -0,0 +1,40 @@
use crate::{
constraints::{new_scope, ConstrainedProgram, ConstrainedValue},
errors::ImportError,
GroupType,
ImportedPrograms,
};
use leo_types::Program;
use snarkos_models::curves::{Field, PrimeField};
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
pub(crate) fn store_definitions(
&mut self,
program: Program,
imported_programs: &ImportedPrograms,
) -> Result<(), ImportError> {
let program_name = program.name.clone();
// evaluate all import statements and store imported definitions
program
.imports
.iter()
.map(|import| self.store_import(program_name.clone(), import, imported_programs))
.collect::<Result<Vec<_>, ImportError>>()?;
// evaluate and store all circuit definitions
program.circuits.into_iter().for_each(|(identifier, circuit)| {
let resolved_circuit_name = new_scope(program_name.clone(), identifier.to_string());
self.store(resolved_circuit_name, ConstrainedValue::CircuitDefinition(circuit));
});
// evaluate and store all function definitions
program.functions.into_iter().for_each(|(function_name, function)| {
let resolved_function_name = new_scope(program_name.clone(), function_name.to_string());
self.store(resolved_function_name, ConstrainedValue::Function(None, function));
});
Ok(())
}
}

View File

@ -0,0 +1,35 @@
use crate::{errors::ImportError, imported_symbols::ImportedSymbols, ConstrainedProgram, GroupType, ImportedPrograms};
use leo_types::Import;
use snarkos_models::curves::{Field, PrimeField};
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
pub(crate) fn store_import(
&mut self,
scope: String,
import: &Import,
imported_programs: &ImportedPrograms,
) -> Result<(), ImportError> {
// get imported program name from import
// get imported symbols from from import
let imported_symbols = ImportedSymbols::from(import);
for (package, symbol) in imported_symbols.symbols {
// get imported program from hashmap
let program = imported_programs
.get(&package)
.ok_or(ImportError::unknown_package(import.package.name.clone()))?;
// resolve imported program's import statements
program
.imports
.iter()
.map(|import| self.store_import(package.clone(), import, imported_programs))
.collect::<Result<Vec<()>, ImportError>>()?;
self.store_symbol(scope.clone(), package, &symbol, program)?;
}
Ok(())
}
}

View File

@ -0,0 +1,38 @@
use leo_types::{Import, ImportSymbol, Package, PackageAccess};
#[derive(Debug)]
pub(crate) struct ImportedSymbols {
pub symbols: Vec<(String, ImportSymbol)>,
}
impl ImportedSymbols {
fn new() -> Self {
Self { symbols: vec![] }
}
pub(crate) fn from(import: &Import) -> Self {
let mut symbols = Self::new();
symbols.from_package(&import.package);
symbols
}
fn from_package(&mut self, package: &Package) {
self.from_package_access(package.name.name.clone(), &package.access);
}
fn from_package_access(&mut self, package: String, access: &PackageAccess) {
match access {
PackageAccess::SubPackage(package) => self.from_package(package),
PackageAccess::Star(span) => {
let star = ImportSymbol::star(span);
self.symbols.push((package, star));
}
PackageAccess::Symbol(symbol) => self.symbols.push((package, symbol.clone())),
PackageAccess::Multiple(packages) => packages
.iter()
.for_each(|access| self.from_package_access(package.clone(), access)),
}
}
}

View File

@ -0,0 +1,8 @@
pub mod import;
pub use self::import::*;
pub mod imported_symbols;
pub mod definitions;
pub mod symbol;

View File

@ -0,0 +1,75 @@
use crate::{errors::ImportError, new_scope, ConstrainedProgram, ConstrainedValue, GroupType};
use leo_types::{ImportSymbol, Program};
use snarkos_models::curves::{Field, PrimeField};
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
pub(crate) fn store_symbol(
&mut self,
scope: String,
program_name: String,
symbol: &ImportSymbol,
program: &Program,
) -> Result<(), ImportError> {
if symbol.is_star() {
// evaluate and store all circuit definitions
program.circuits.iter().for_each(|(identifier, circuit)| {
let name = new_scope(scope.clone(), identifier.to_string());
let value = ConstrainedValue::Import(
program_name.clone(),
Box::new(ConstrainedValue::CircuitDefinition(circuit.clone())),
);
self.store(name, value);
});
// evaluate and store all function definitions
program.functions.iter().for_each(|(identifier, function)| {
let name = new_scope(scope.clone(), identifier.to_string());
let value = ConstrainedValue::Import(
program_name.clone(),
Box::new(ConstrainedValue::Function(None, function.clone())),
);
self.store(name, value);
});
} else {
// see if the imported symbol is a circuit
let matched_circuit = program
.circuits
.iter()
.find(|(circuit_name, _circuit_def)| symbol.symbol == **circuit_name);
let value = match matched_circuit {
Some((_circuit_name, circuit)) => ConstrainedValue::Import(
program_name.clone(),
Box::new(ConstrainedValue::CircuitDefinition(circuit.clone())),
),
None => {
// see if the imported symbol is a function
let matched_function = program
.functions
.iter()
.find(|(function_name, _function)| symbol.symbol == **function_name);
match matched_function {
Some((_function_name, function)) => ConstrainedValue::Import(
program_name.clone(),
Box::new(ConstrainedValue::Function(None, function.clone())),
),
None => return Err(ImportError::unknown_symbol(symbol.to_owned(), program_name)),
}
}
};
// take the alias if it is present
let id = symbol.alias.clone().unwrap_or(symbol.symbol.clone());
let name = new_scope(scope, id.to_string());
// store imported circuit under imported name
self.store(name, value);
}
Ok(())
}
}

View File

@ -2,13 +2,14 @@
use crate::{
comparator::{ComparatorGadget, EvaluateLtGadget},
constraints::{ConstrainedCircuitMember, ConstrainedProgram, ConstrainedValue},
enforce_and,
enforce_or,
constraints::{
boolean::{enforce_and, enforce_or, evaluate_not, new_bool_constant},
new_scope,
ConstrainedCircuitMember,
ConstrainedProgram,
ConstrainedValue,
},
errors::ExpressionError,
evaluate_not,
new_bool_constant,
new_scope,
FieldType,
GroupType,
Integer,
@ -52,6 +53,9 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
} else if let Some(value) = self.get(&identifier_name) {
// Check global scope (function and circuit names)
value.clone()
} else if let Some(value) = self.get(&unresolved_identifier.name) {
// Check imported file scope
value.clone()
} else {
return Err(ExpressionError::undefined_identifier(unresolved_identifier));
};
@ -634,53 +638,55 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
program_identifier = file_scope.clone();
}
if let Some(ConstrainedValue::CircuitDefinition(circuit_definition)) = self.get_mut(&program_identifier) {
let circuit_identifier = circuit_definition.circuit_name.clone();
let mut resolved_members = vec![];
for member in circuit_definition.members.clone().into_iter() {
match member {
CircuitMember::CircuitField(identifier, _type) => {
let matched_field = members
.clone()
.into_iter()
.find(|field| field.identifier.eq(&identifier));
match matched_field {
Some(field) => {
// Resolve and enforce circuit object
let field_value = self.enforce_expression(
cs,
file_scope.clone(),
function_scope.clone(),
&vec![_type.clone()],
field.expression,
)?;
let circuit = match self.get(&program_identifier) {
Some(value) => value.clone().extract_circuit(span.clone())?,
None => return Err(ExpressionError::undefined_circuit(identifier.to_string(), span)),
};
resolved_members.push(ConstrainedCircuitMember(identifier, field_value))
}
None => return Err(ExpressionError::expected_circuit_member(identifier.to_string(), span)),
let circuit_identifier = circuit.circuit_name.clone();
let mut resolved_members = vec![];
for member in circuit.members.clone().into_iter() {
match member {
CircuitMember::CircuitField(identifier, _type) => {
let matched_field = members
.clone()
.into_iter()
.find(|field| field.identifier.eq(&identifier));
match matched_field {
Some(field) => {
// Resolve and enforce circuit object
let field_value = self.enforce_expression(
cs,
file_scope.clone(),
function_scope.clone(),
&vec![_type.clone()],
field.expression,
)?;
resolved_members.push(ConstrainedCircuitMember(identifier, field_value))
}
None => return Err(ExpressionError::expected_circuit_member(identifier.to_string(), span)),
}
CircuitMember::CircuitFunction(_static, function) => {
let identifier = function.function_name.clone();
let mut constrained_function_value =
ConstrainedValue::Function(Some(circuit_identifier.clone()), function);
}
CircuitMember::CircuitFunction(_static, function) => {
let identifier = function.function_name.clone();
let mut constrained_function_value =
ConstrainedValue::Function(Some(circuit_identifier.clone()), function);
if _static {
constrained_function_value = ConstrainedValue::Static(Box::new(constrained_function_value));
}
resolved_members.push(ConstrainedCircuitMember(identifier, constrained_function_value));
if _static {
constrained_function_value = ConstrainedValue::Static(Box::new(constrained_function_value));
}
};
}
Ok(ConstrainedValue::CircuitExpression(
circuit_identifier.clone(),
resolved_members,
))
} else {
Err(ExpressionError::undefined_circuit(identifier.to_string(), span))
resolved_members.push(ConstrainedCircuitMember(identifier, constrained_function_value));
}
};
}
Ok(ConstrainedValue::CircuitExpression(
circuit_identifier.clone(),
resolved_members,
))
}
fn enforce_circuit_access_expression<CS: ConstraintSystem<F>>(
@ -811,18 +817,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
*function.clone(),
)?;
let (outer_scope, function_call) = match function_value {
ConstrainedValue::Function(circuit_identifier, function) => {
let mut outer_scope = file_scope.clone();
// If this is a circuit function, evaluate inside the circuit scope
if circuit_identifier.is_some() {
outer_scope = new_scope(file_scope, circuit_identifier.unwrap().to_string());
}
(outer_scope, function.clone())
}
value => return Err(ExpressionError::undefined_function(value.to_string(), span)),
};
let (outer_scope, function_call) = function_value.extract_function(file_scope, span.clone())?;
let name_unique = format!(
"function call {} {}:{}",

View File

@ -2,17 +2,21 @@
//! a resolved Leo program.
use crate::{
bool_from_input,
constraints::{new_scope, ConstrainedProgram, ConstrainedValue},
errors::{FunctionError, ImportError},
field_from_input,
group_from_input,
constraints::{
boolean::bool_from_input,
field::field_from_input,
group::group_from_input,
new_scope,
ConstrainedProgram,
ConstrainedValue,
},
errors::{FunctionError, StatementError},
GroupType,
Integer,
};
use leo_types::{Expression, Function, InputValue, Program, Span, Type};
use crate::errors::StatementError;
use leo_types::{Expression, Function, InputValue, Span, Type};
use snarkos_models::{
curves::{Field, PrimeField},
gadgets::{
@ -272,29 +276,4 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
self.enforce_function(cs, scope, function_name, function, input_variables)
}
pub(crate) fn resolve_definitions(&mut self, program: Program) -> Result<(), ImportError> {
let program_name = program.name.clone();
// evaluate and store all imports
program
.imports
.into_iter()
.map(|import| self.enforce_import(program_name.clone(), import))
.collect::<Result<Vec<_>, ImportError>>()?;
// evaluate and store all circuit definitions
program.circuits.into_iter().for_each(|(identifier, circuit)| {
let resolved_circuit_name = new_scope(program_name.clone(), identifier.to_string());
self.store(resolved_circuit_name, ConstrainedValue::CircuitDefinition(circuit));
});
// evaluate and store all function definitions
program.functions.into_iter().for_each(|(function_name, function)| {
let resolved_function_name = new_scope(program_name.clone(), function_name.to_string());
self.store(resolved_function_name, ConstrainedValue::Function(None, function));
});
Ok(())
}
}

View File

@ -0,0 +1,70 @@
use crate::{errors::CompilerError, new_scope, ConstrainedProgram, ConstrainedValue, GroupType, ImportedPrograms};
use leo_types::{InputValue, Program};
use snarkos_models::{
curves::{Field, PrimeField},
gadgets::r1cs::{ConstraintSystem, TestConstraintSystem},
};
pub fn generate_constraints<F: Field + PrimeField, G: GroupType<F>, CS: ConstraintSystem<F>>(
cs: &mut CS,
program: Program,
parameters: Vec<Option<InputValue>>,
imported_programs: &ImportedPrograms,
) -> Result<ConstrainedValue<F, G>, CompilerError> {
let mut resolved_program = ConstrainedProgram::new();
let program_name = program.get_name();
let main_function_name = new_scope(program_name.clone(), "main".into());
resolved_program.store_definitions(program, imported_programs)?;
let main = resolved_program
.get(&main_function_name)
.ok_or_else(|| CompilerError::NoMain)?;
match main.clone() {
ConstrainedValue::Function(_circuit_identifier, function) => {
let result = resolved_program.enforce_main_function(cs, program_name, function, parameters)?;
Ok(result)
}
_ => Err(CompilerError::NoMainFunction),
}
}
pub fn generate_test_constraints<F: Field + PrimeField, G: GroupType<F>>(
cs: &mut TestConstraintSystem<F>,
program: Program,
imported_programs: &ImportedPrograms,
) -> Result<(), CompilerError> {
let mut resolved_program = ConstrainedProgram::<F, G>::new();
let program_name = program.get_name();
let tests = program.tests.clone();
resolved_program.store_definitions(program, imported_programs)?;
log::info!("Running {} tests", tests.len());
for (test_name, test_function) in tests.into_iter() {
let full_test_name = format!("{}::{}", program_name.clone(), test_name.to_string());
let result = resolved_program.enforce_main_function(
cs,
program_name.clone(),
test_function.0,
vec![], // test functions should not take any inputs
);
if result.is_ok() {
log::info!(
"test {} passed. Constraint system satisfied: {}",
full_test_name,
cs.is_satisfied()
);
} else {
log::error!("test {} errored: {}", full_test_name, result.unwrap_err());
}
}
Ok(())
}

View File

@ -1,13 +0,0 @@
use crate::{constraints::ConstrainedProgram, errors::constraints::ImportError, GroupType};
use leo_types::Import;
use snarkos_models::curves::{Field, PrimeField};
use std::env::current_dir;
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
pub fn enforce_import(&mut self, scope: String, import: Import) -> Result<(), ImportError> {
let path = current_dir().map_err(|error| ImportError::directory_error(error, import.span.clone()))?;
self.enforce_package(scope, path, import.package)
}
}

View File

@ -1,136 +0,0 @@
use crate::{
constraints::{ConstrainedProgram, ConstrainedValue},
errors::constraints::ImportError,
new_scope,
GroupType,
};
use leo_ast::LeoParser;
use leo_types::{ImportSymbol, Program, Span};
use snarkos_models::curves::{Field, PrimeField};
use std::{
ffi::OsString,
fs::{read_dir, DirEntry},
};
static LIBRARY_FILE: &str = "src/lib.leo";
fn parse_import_file(entry: &DirEntry, span: &Span) -> Result<Program, ImportError> {
// make sure the given entry is file
let file_type = entry
.file_type()
.map_err(|error| ImportError::directory_error(error, span.clone()))?;
let file_name = entry
.file_name()
.into_string()
.map_err(|_| ImportError::convert_os_string(span.clone()))?;
let mut file_path = entry.path();
if file_type.is_dir() {
file_path.push(LIBRARY_FILE);
if !file_path.exists() {
return Err(ImportError::expected_lib_file(
format!("{:?}", file_path.as_path()),
span.clone(),
));
}
}
// Build the abstract syntax tree
let input_file = &LeoParser::load_file(&file_path)?;
let syntax_tree = LeoParser::parse_file(&file_path, input_file)?;
// Generate aleo program from file
Ok(Program::from(syntax_tree, file_name.clone()))
}
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
pub fn enforce_import_star(&mut self, scope: String, entry: &DirEntry, span: Span) -> Result<(), ImportError> {
// import star from a file
if entry.path().is_file() {
// only parse `.leo` files
if let Some(extension) = entry.path().extension() {
if extension.eq(&OsString::from("leo")) {
let mut program = parse_import_file(entry, &span)?;
// Use same namespace as calling function for imported symbols
program = program.name(scope);
// * -> import all imports, circuits, functions in the current scope
self.resolve_definitions(program)
} else {
Ok(())
}
} else {
Ok(())
}
} else {
// import star for every file in the directory
for entry in read_dir(entry.path()).map_err(|error| ImportError::directory_error(error, span.clone()))? {
match entry {
Ok(entry) => self.enforce_import_star(scope.clone(), &entry, span.clone())?,
Err(error) => return Err(ImportError::directory_error(error, span.clone())),
}
}
Ok(())
}
}
pub fn enforce_import_symbol(
&mut self,
scope: String,
entry: &DirEntry,
symbol: ImportSymbol,
) -> Result<(), ImportError> {
// Generate aleo program from file
let mut program = parse_import_file(entry, &symbol.span)?;
// Use same namespace as calling function for imported symbols
program = program.name(scope);
let program_name = program.name.clone();
// see if the imported symbol is a circuit
let matched_circuit = program
.circuits
.clone()
.into_iter()
.find(|(circuit_name, _circuit_def)| symbol.symbol == *circuit_name);
let value = match matched_circuit {
Some((_circuit_name, circuit_def)) => ConstrainedValue::CircuitDefinition(circuit_def),
None => {
// see if the imported symbol is a function
let matched_function = program
.functions
.clone()
.into_iter()
.find(|(function_name, _function)| symbol.symbol == *function_name);
match matched_function {
Some((_function_name, function)) => ConstrainedValue::Function(None, function),
None => return Err(ImportError::unknown_symbol(symbol, program_name, &entry.path())),
}
}
};
// take the alias if it is present
let name = symbol.alias.unwrap_or(symbol.symbol);
let resolved_name = new_scope(program_name.clone(), name.to_string());
// store imported circuit under resolved name
self.store(resolved_name, value);
// evaluate all import statements in imported file
// todo: add logic to detect import loops
program
.imports
.into_iter()
.map(|nested_import| self.enforce_import(program_name.clone(), nested_import))
.collect::<Result<Vec<_>, ImportError>>()?;
Ok(())
}
}

View File

@ -1,8 +0,0 @@
pub mod import;
pub use import::*;
pub mod import_symbol;
pub use import_symbol::*;
pub mod package;
pub use package::*;

View File

@ -1,103 +1,34 @@
//! Module containing methods to enforce constraints in an Leo program
pub(crate) mod boolean;
pub(crate) use boolean::*;
pub mod boolean;
pub(crate) mod comparator;
pub(crate) use comparator::*;
pub mod function;
pub use function::*;
pub use self::function::*;
pub mod expression;
pub use expression::*;
pub use self::expression::*;
pub mod import;
pub use import::*;
pub mod field;
pub mod integer;
pub use integer::*;
pub(crate) mod field;
pub(crate) use field::*;
pub mod generate_constraints;
pub use self::generate_constraints::*;
pub(crate) mod group;
pub(crate) use group::*;
pub mod group;
pub mod definitions;
pub use self::definitions::*;
pub mod program;
pub use program::*;
pub use self::program::*;
pub mod value;
pub use value::*;
pub use self::value::*;
pub mod statement;
pub use statement::*;
use crate::{errors::CompilerError, GroupType};
use leo_types::{InputValue, Program};
use snarkos_models::{
curves::{Field, PrimeField},
gadgets::r1cs::{ConstraintSystem, TestConstraintSystem},
};
pub fn generate_constraints<F: Field + PrimeField, G: GroupType<F>, CS: ConstraintSystem<F>>(
cs: &mut CS,
program: Program,
parameters: Vec<Option<InputValue>>,
) -> Result<ConstrainedValue<F, G>, CompilerError> {
let mut resolved_program = ConstrainedProgram::new();
let program_name = program.get_name();
let main_function_name = new_scope(program_name.clone(), "main".into());
resolved_program.resolve_definitions(program)?;
let main = resolved_program
.get(&main_function_name)
.ok_or_else(|| CompilerError::NoMain)?;
match main.clone() {
ConstrainedValue::Function(_circuit_identifier, function) => {
let result = resolved_program.enforce_main_function(cs, program_name, function, parameters)?;
Ok(result)
}
_ => Err(CompilerError::NoMainFunction),
}
}
pub fn generate_test_constraints<F: Field + PrimeField, G: GroupType<F>>(
cs: &mut TestConstraintSystem<F>,
program: Program,
) -> Result<(), CompilerError> {
let mut resolved_program = ConstrainedProgram::<F, G>::new();
let program_name = program.get_name();
let tests = program.tests.clone();
resolved_program.resolve_definitions(program)?;
log::info!("Running {} tests", tests.len());
for (test_name, test_function) in tests.into_iter() {
let full_test_name = format!("{}::{}", program_name.clone(), test_name.to_string());
let result = resolved_program.enforce_main_function(
cs,
program_name.clone(),
test_function.0,
vec![], // test functions should not take any inputs
);
if result.is_ok() {
log::info!(
"test {} passed. Constraint system satisfied: {}",
full_test_name,
cs.is_satisfied()
);
} else {
log::error!("test {} errored: {}", full_test_name, result.unwrap_err());
}
}
Ok(())
}
pub use self::statement::*;

View File

@ -1,17 +1,20 @@
//! The in memory stored value for a defined name in a resolved Leo program.
use crate::{
allocate_bool,
allocate_field,
allocate_group,
constraints::{
boolean::{allocate_bool, new_bool_constant},
field::allocate_field,
group::allocate_group,
},
errors::ValueError,
new_bool_constant,
new_scope,
FieldType,
GroupType,
Integer,
};
use leo_types::{Circuit, Function, Identifier, Span, Type};
use crate::errors::ExpressionError;
use snarkos_errors::gadgets::SynthesisError;
use snarkos_models::{
curves::{Field, PrimeField},
@ -42,6 +45,7 @@ pub enum ConstrainedValue<F: Field + PrimeField, G: GroupType<F>> {
Mutable(Box<ConstrainedValue<F, G>>),
Static(Box<ConstrainedValue<F, G>>),
Import(String, Box<ConstrainedValue<F, G>>),
Unresolved(String),
}
@ -116,6 +120,30 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedValue<F, G> {
}
}
pub(crate) fn extract_function(self, scope: String, span: Span) -> Result<(String, Function), ExpressionError> {
match self {
ConstrainedValue::Function(circuit_identifier, function) => {
let mut outer_scope = scope.clone();
// If this is a circuit function, evaluate inside the circuit scope
if circuit_identifier.is_some() {
outer_scope = new_scope(scope, circuit_identifier.unwrap().to_string());
}
Ok((outer_scope, function.clone()))
}
ConstrainedValue::Import(import_scope, function) => function.extract_function(import_scope, span),
value => return Err(ExpressionError::undefined_function(value.to_string(), span)),
}
}
pub(crate) fn extract_circuit(self, span: Span) -> Result<Circuit, ExpressionError> {
match self {
ConstrainedValue::CircuitDefinition(circuit) => Ok(circuit),
ConstrainedValue::Import(_import_scope, circuit) => circuit.extract_circuit(span),
value => return Err(ExpressionError::undefined_circuit(value.to_string(), span)),
}
}
pub(crate) fn get_inner_mut(&mut self) {
if let ConstrainedValue::Mutable(inner) = self {
*self = *inner.clone()
@ -193,6 +221,8 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedValue<F, G> {
// empty wrappers
ConstrainedValue::CircuitDefinition(_) => {}
ConstrainedValue::Function(_, _) => {}
ConstrainedValue::Import(_, _) => {}
ConstrainedValue::Unresolved(value) => {
return Err(ValueError::implicit(value.to_string(), span));
}
@ -250,6 +280,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> fmt::Display for ConstrainedValue<F
ConstrainedValue::Function(ref _circuit_option, ref function) => {
write!(f, "function {{ {}() }}", function.function_name)
}
ConstrainedValue::Import(_, ref value) => write!(f, "{}", value),
ConstrainedValue::Mutable(ref value) => write!(f, "mut {}", value),
ConstrainedValue::Static(ref value) => write!(f, "static {}", value),
ConstrainedValue::Unresolved(ref value) => write!(f, "unresolved {}", value),

View File

@ -17,6 +17,10 @@ impl ImportError {
ImportError::Error(FormattedError::new_from_span(message, span))
}
fn new_from_span_with_path(message: String, span: Span, path: PathBuf) -> Self {
ImportError::Error(FormattedError::new_from_span_with_path(message, span, path))
}
pub fn conflicting_imports(identifier: Identifier) -> Self {
let message = format!("conflicting imports found for `{}`", identifier.name);
@ -29,9 +33,27 @@ impl ImportError {
Self::new_from_span(message, span)
}
pub fn directory_error(error: io::Error, span: Span) -> Self {
pub fn current_directory_error(error: io::Error) -> Self {
let span = Span {
text: "".to_string(),
line: 0,
start: 0,
end: 0,
};
let message = format!("compilation failed trying to find current directory - {:?}", error);
Self::new_from_span(message, span)
}
pub fn directory_error(error: io::Error, span: Span, path: PathBuf) -> Self {
let message = format!("compilation failed due to directory error - {:?}", error);
Self::new_from_span_with_path(message, span, path)
}
pub fn star(path: PathBuf, span: Span) -> Self {
let message = format!("cannot import `*` from path `{:?}`", path);
Self::new_from_span(message, span)
}
@ -53,11 +75,9 @@ impl ImportError {
Self::new_from_span(message, identifier.span)
}
pub fn unknown_symbol(symbol: ImportSymbol, file: String, file_path: &PathBuf) -> Self {
pub fn unknown_symbol(symbol: ImportSymbol, file: String) -> Self {
let message = format!("cannot find imported symbol `{}` in imported file `{}`", symbol, file);
let mut error = FormattedError::new_from_span(message, symbol.span);
error.path = Some(format!("{:?}", file_path));
let error = FormattedError::new_from_span(message, symbol.span);
ImportError::Error(error)
}

View File

@ -1,28 +1,28 @@
//! Module containing errors returned when enforcing constraints in an Leo program
pub mod boolean;
pub use boolean::*;
pub use self::boolean::*;
pub mod function;
pub use function::*;
pub use self::function::*;
pub mod expression;
pub use expression::*;
pub use self::expression::*;
pub mod import;
pub use import::*;
pub use self::import::*;
pub mod integer;
pub use integer::*;
pub mod field;
pub use field::*;
pub use self::field::*;
pub mod group;
pub use group::*;
pub use self::group::*;
pub mod value;
pub use value::*;
pub use self::value::*;
pub mod statement;
pub use statement::*;
pub use self::statement::*;

View File

@ -0,0 +1,108 @@
use crate::{errors::constraints::ImportError, ImportedPrograms};
use leo_ast::LeoParser;
use leo_types::{ImportSymbol, Program, Span};
use std::{ffi::OsString, fs::DirEntry, path::PathBuf};
static LIBRARY_FILE: &str = "src/lib.leo";
static FILE_EXTENSION: &str = "leo";
fn parse_import_file(entry: &DirEntry, span: &Span) -> Result<Program, ImportError> {
// make sure the given entry is file
let file_type = entry
.file_type()
.map_err(|error| ImportError::directory_error(error, span.clone(), entry.path()))?;
let file_name = entry
.file_name()
.to_os_string()
.into_string()
.map_err(|_| ImportError::convert_os_string(span.clone()))?;
let mut file_path = entry.path().to_path_buf();
if file_type.is_dir() {
file_path.push(LIBRARY_FILE);
if !file_path.exists() {
return Err(ImportError::expected_lib_file(
format!("{:?}", file_path.as_path()),
span.clone(),
));
}
}
// Build the abstract syntax tree
let input_file = &LeoParser::load_file(&file_path)?;
let syntax_tree = LeoParser::parse_file(&file_path, input_file)?;
// Generate aleo program from file
Ok(Program::from(syntax_tree, file_name.clone()))
}
impl ImportedPrograms {
pub fn parse_import_star(&mut self, entry: &DirEntry, span: &Span) -> Result<(), ImportError> {
let path = entry.path();
let is_dir = path.is_dir();
let is_leo_file = path
.extension()
.map_or(false, |ext| ext.eq(&OsString::from(FILE_EXTENSION)));
let mut package_path = path.to_path_buf();
package_path.push(LIBRARY_FILE);
let is_package = is_dir && package_path.exists();
// import * can only be invoked on a package with a library file or a leo file
if is_package || is_leo_file {
// Generate aleo program from file
let program = parse_import_file(entry, &span)?;
// Store program's imports in imports hashmap
program
.imports
.iter()
.map(|import| self.parse_package(entry.path(), &import.package))
.collect::<Result<Vec<()>, ImportError>>()?;
// Store program in imports hashmap
let file_name_path = PathBuf::from(entry.file_name());
let file_name = file_name_path
.file_stem()
.unwrap()
.to_os_string()
.into_string()
.unwrap(); // the file exists so these will not fail
self.store(file_name, program);
Ok(())
} else {
// importing * from a directory or non-leo file in `package/src/` is illegal
Err(ImportError::star(entry.path().to_path_buf(), span.clone()))
}
}
pub fn parse_import_symbol(&mut self, entry: &DirEntry, symbol: &ImportSymbol) -> Result<(), ImportError> {
// Generate aleo program from file
let program = parse_import_file(entry, &symbol.span)?;
// Store program's imports in imports hashmap
program
.imports
.iter()
.map(|import| self.parse_package(entry.path(), &import.package))
.collect::<Result<Vec<()>, ImportError>>()?;
// Store program in imports hashmap
let file_name_path = PathBuf::from(entry.file_name());
let file_name = file_name_path
.file_stem()
.unwrap()
.to_os_string()
.into_string()
.unwrap(); // the file exists so these will not fail
self.store(file_name, program);
Ok(())
}
}

View File

@ -0,0 +1,42 @@
use crate::errors::ImportError;
use leo_types::Program;
use std::{collections::HashMap, env::current_dir};
#[derive(Clone)]
pub struct ImportedPrograms {
imports: HashMap<String, Program>,
}
impl ImportedPrograms {
pub fn new() -> Self {
Self {
imports: HashMap::new(),
}
}
pub(crate) fn store(&mut self, file_name: String, program: Program) {
// todo: handle conflicting versions for duplicate imports here
let _res = self.imports.insert(file_name, program);
}
pub fn get(&self, file_name: &String) -> Option<&Program> {
self.imports.get(file_name)
}
pub fn from_program(program: &Program) -> Result<Self, ImportError> {
let mut imports = Self::new();
// Find all imports relative to current directory
let path = current_dir().map_err(|error| ImportError::current_directory_error(error))?;
// Parse each imported file
program
.imports
.iter()
.map(|import| imports.parse_package(path.clone(), &import.package))
.collect::<Result<Vec<()>, ImportError>>()?;
Ok(imports)
}
}

View File

@ -0,0 +1,8 @@
pub mod imported_programs;
pub use self::imported_programs::*;
pub mod import_symbol;
pub use self::import_symbol::*;
pub mod package;
pub use self::package::*;

View File

@ -1,29 +1,23 @@
use crate::{constraints::ConstrainedProgram, errors::constraints::ImportError, GroupType};
use crate::{errors::constraints::ImportError, ImportedPrograms};
use leo_types::{Package, PackageAccess};
use snarkos_models::curves::{Field, PrimeField};
use std::{fs, fs::DirEntry, path::PathBuf};
static SOURCE_FILE_EXTENSION: &str = ".leo";
static SOURCE_DIRECTORY_NAME: &str = "src/";
static IMPORTS_DIRECTORY_NAME: &str = "imports/";
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
pub fn enforce_package_access(
&mut self,
scope: String,
entry: &DirEntry,
access: PackageAccess,
) -> Result<(), ImportError> {
impl ImportedPrograms {
pub fn parse_package_access(&mut self, entry: &DirEntry, access: &PackageAccess) -> Result<(), ImportError> {
// bring one or more import symbols into scope for the current constrained program
// we will recursively traverse sub packages here until we find the desired symbol
match access {
PackageAccess::Star(span) => self.enforce_import_star(scope, entry, span),
PackageAccess::Symbol(symbol) => self.enforce_import_symbol(scope, entry, symbol),
PackageAccess::SubPackage(package) => self.enforce_package(scope, entry.path(), *package),
PackageAccess::Star(span) => self.parse_import_star(entry, span),
PackageAccess::Symbol(symbol) => self.parse_import_symbol(entry, symbol),
PackageAccess::SubPackage(package) => self.parse_package(entry.path(), package),
PackageAccess::Multiple(accesses) => {
for access in accesses {
self.enforce_package_access(scope.clone(), entry, access)?;
self.parse_package_access(entry, access)?;
}
Ok(())
@ -31,8 +25,14 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
}
}
pub fn enforce_package(&mut self, scope: String, mut path: PathBuf, package: Package) -> Result<(), ImportError> {
let package_name = package.name;
pub fn parse_package(&mut self, mut path: PathBuf, package: &Package) -> Result<(), ImportError> {
let error_path = path.clone();
let package_name = package.name.clone();
// trim path if importing from another file
if path.is_file() {
path.pop();
}
// search for package name in local directory
let mut source_directory = path.clone();
@ -48,14 +48,15 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
}
let entries = fs::read_dir(path)
.map_err(|error| ImportError::directory_error(error, package_name.span.clone()))?
.map_err(|error| ImportError::directory_error(error, package_name.span.clone(), error_path.clone()))?
.into_iter()
.collect::<Result<Vec<_>, std::io::Error>>()
.map_err(|error| ImportError::directory_error(error, package_name.span.clone()))?;
.map_err(|error| ImportError::directory_error(error, package_name.span.clone(), error_path.clone()))?;
let matched_source_entry = entries.into_iter().find(|entry| {
entry
.file_name()
.to_os_string()
.into_string()
.unwrap()
.trim_end_matches(SOURCE_FILE_EXTENSION)
@ -64,26 +65,25 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
if imports_directory.exists() {
let entries = fs::read_dir(imports_directory)
.map_err(|error| ImportError::directory_error(error, package_name.span.clone()))?
.map_err(|error| ImportError::directory_error(error, package_name.span.clone(), error_path.clone()))?
.into_iter()
.collect::<Result<Vec<_>, std::io::Error>>()
.map_err(|error| ImportError::directory_error(error, package_name.span.clone()))?;
.map_err(|error| ImportError::directory_error(error, package_name.span.clone(), error_path.clone()))?;
let matched_import_entry = entries
.into_iter()
.find(|entry| entry.file_name().into_string().unwrap().eq(&package_name.name));
// Enforce package access and potential collisions
match (matched_source_entry, matched_import_entry) {
(Some(_), Some(_)) => Err(ImportError::conflicting_imports(package_name)),
(Some(source_entry), None) => self.enforce_package_access(scope, &source_entry, package.access),
(None, Some(import_entry)) => self.enforce_package_access(scope, &import_entry, package.access),
(Some(source_entry), None) => self.parse_package_access(&source_entry, &package.access),
(None, Some(import_entry)) => self.parse_package_access(&import_entry, &package.access),
(None, None) => Err(ImportError::unknown_package(package_name)),
}
} else {
// Enforce local package access with no found imports directory
match matched_source_entry {
Some(source_entry) => self.enforce_package_access(scope, &source_entry, package.access),
Some(source_entry) => self.parse_package_access(&source_entry, &package.access),
None => Err(ImportError::unknown_package(package_name)),
}
}

View File

@ -15,3 +15,6 @@ pub use self::field::*;
pub mod group;
pub use self::group::*;
pub mod imports;
pub use self::imports::*;

View File

@ -12,12 +12,12 @@ import bar.( // imports directory import
import car.Car; // imports directory import
function main() -> u32 {
// const point = Point { x: 1u32, y: 1u32 };
// const foo = foo();
const point = Point { x: 1u32, y: 1u32 };
const foo = foo();
const bar = Bar { r: 1u32 };
const bat = Bat { t: 1u32 };
const baz = Baz { z: 1u32 };
const bat = Bat { t: 1u32 };
const car = Car { c: 1u32 };

View File

@ -1,6 +1,9 @@
import test_import.*; // local import
import bar.*; // imports directory import
import car.*; // imports directory import
import bar.*; // imports directory import
import bar.baz.*; // imports directory import
import bar.bat.bat.*; // imports directory import
import car.*; // imports directory import
function main() -> u32 {
const point = Point { x: 1u32, y: 1u32 };

View File

@ -16,44 +16,53 @@ fn set_local_dir() {
#[test]
#[ignore]
fn test_basic() {
set_local_dir();
let bytes = include_bytes!("basic.leo");
let program = parse_program(bytes).unwrap();
set_local_dir();
output_one(program);
}
#[test]
#[ignore]
fn test_multiple() {
set_local_dir();
let bytes = include_bytes!("multiple.leo");
let program = parse_program(bytes).unwrap();
set_local_dir();
output_one(program);
}
#[test]
#[ignore]
fn test_star() {
set_local_dir();
let bytes = include_bytes!("star.leo");
let program = parse_program(bytes).unwrap();
set_local_dir();
output_one(program);
}
#[test]
#[ignore]
fn test_star_fail() {
set_local_dir();
let bytes = include_bytes!("star_fail.leo");
assert!(parse_program(bytes).is_err());
}
#[test]
#[ignore]
fn test_alias() {
set_local_dir();
let bytes = include_bytes!("alias.leo");
let program = parse_program(bytes).unwrap();
set_local_dir();
output_one(program);
}
@ -61,21 +70,21 @@ fn test_alias() {
#[test]
#[ignore]
fn test_many_import() {
set_local_dir();
let bytes = include_bytes!("many_import.leo");
let program = parse_program(bytes).unwrap();
set_local_dir();
output_one(program);
}
#[test]
#[ignore]
fn test_many_import_star() {
set_local_dir();
let bytes = include_bytes!("many_import_star.leo");
let program = parse_program(bytes).unwrap();
set_local_dir();
output_one(program);
}

View File

@ -0,0 +1,4 @@
// importing `*` from a directory is illegal
import bar.bat.*;
function main() {}

View File

@ -39,6 +39,17 @@ impl Error {
}
}
pub fn new_from_span_with_path(message: String, span: Span, path: PathBuf) -> Self {
Self {
path: Some(format!("{:?}", path)),
line: span.line,
start: span.start,
end: span.end,
text: span.text,
message,
}
}
pub fn set_path(&mut self, path: PathBuf) {
self.path = Some(format!("{:?}", path));
}

View File

@ -22,16 +22,6 @@ impl<'ast> From<AstImport<'ast>> for Import {
}
impl Import {
pub fn path_string_full(&self) -> String {
format!("{}.leo", self.package.name)
}
// from "./import" import *;
pub fn is_star(&self) -> bool {
// self.symbols.is_empty()
false
}
fn format(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "import {};", self.package)
}

View File

@ -30,3 +30,31 @@ impl fmt::Display for ImportSymbol {
}
}
}
// todo: remove this
impl fmt::Debug for ImportSymbol {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.alias.is_some() {
write!(f, "{} as {}", self.symbol, self.alias.as_ref().unwrap())
} else {
write!(f, "{}", self.symbol)
}
}
}
impl ImportSymbol {
pub fn star(span: &Span) -> Self {
Self {
symbol: Identifier {
name: "*".to_string(),
span: span.clone(),
},
alias: None,
span: span.clone(),
}
}
pub fn is_star(&self) -> bool {
self.symbol.name.eq("*")
}
}

View File

@ -28,11 +28,11 @@ impl<'ast> From<AstPackageAccess<'ast>> for PackageAccess {
impl PackageAccess {
fn format(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
PackageAccess::Star(ref _span) => write!(f, ".*"),
PackageAccess::SubPackage(ref package) => write!(f, ".{}", package),
PackageAccess::Symbol(ref symbol) => write!(f, ".{}", symbol),
PackageAccess::Star(ref _span) => write!(f, "*"),
PackageAccess::SubPackage(ref package) => write!(f, "{}", package),
PackageAccess::Symbol(ref symbol) => write!(f, "{}", symbol),
PackageAccess::Multiple(ref accesses) => {
write!(f, ".(")?;
write!(f, "(")?;
for (i, access) in accesses.iter().enumerate() {
write!(f, "{}", access)?;
if i < accesses.len() - 1 {

View File

@ -1,29 +1,29 @@
pub mod circuits;
pub use circuits::*;
pub use self::circuits::*;
pub mod common;
pub use common::*;
pub use self::common::*;
pub mod errors;
pub use errors::*;
pub use self::errors::*;
pub mod expression;
pub use expression::*;
pub use self::expression::*;
pub mod functions;
pub use functions::*;
pub use self::functions::*;
pub mod imports;
pub use imports::*;
pub use self::imports::*;
pub mod inputs;
pub use inputs::*;
pub use self::inputs::*;
pub mod program;
pub use program::*;
pub use self::program::*;
pub mod statements;
pub use statements::*;
pub use self::statements::*;
pub mod types;
pub use types::*;
pub use self::types::*;