add variable table to function body

This commit is contained in:
collin 2020-10-14 15:12:55 -07:00
parent cc6cf4e6a5
commit de6f6ae7ae
2 changed files with 59 additions and 18 deletions

View File

@ -14,15 +14,15 @@
// You should have received a copy of the GNU General Public License // You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>. // along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use leo_static_check::{FunctionInputType, FunctionType, SymbolTable, Type};
use leo_typed::{Expression, Function, Identifier, Program, Span, Statement}; use leo_typed::{Expression, Function, Identifier, Program, Span, Statement};
use leo_static_check::{FunctionType, SymbolTable, Type};
use serde::{Deserialize, Serialize}; use serde::{Deserialize, Serialize};
use std::collections::HashSet; use std::collections::HashMap;
/// Performs a dynamic type inference check over a program. /// Performs a dynamic type inference check over a program.
pub struct DynamicCheck { pub struct DynamicCheck {
symbol_table: SymbolTable, table: SymbolTable,
functions: Vec<FunctionBody>, functions: Vec<FunctionBody>,
} }
@ -32,7 +32,7 @@ impl DynamicCheck {
/// ///
pub fn new(program: &Program, symbol_table: SymbolTable) -> Self { pub fn new(program: &Program, symbol_table: SymbolTable) -> Self {
let mut dynamic_check = Self { let mut dynamic_check = Self {
symbol_table, table: symbol_table,
functions: vec![], functions: vec![],
}; };
@ -67,7 +67,7 @@ impl DynamicCheck {
/// Collects a vector of `TypeAssertion` predicates from a function. /// Collects a vector of `TypeAssertion` predicates from a function.
/// ///
fn parse_function(&mut self, function: &Function) { fn parse_function(&mut self, function: &Function) {
let function_body = FunctionBody::new(function.clone(), self.symbol_table.clone()); let function_body = FunctionBody::new(function.clone(), self.table.clone());
self.functions.push(function_body); self.functions.push(function_body);
} }
@ -92,9 +92,9 @@ impl DynamicCheck {
#[derive(Clone)] #[derive(Clone)]
pub struct FunctionBody { pub struct FunctionBody {
function_type: FunctionType, function_type: FunctionType,
symbol_table: SymbolTable, user_defined_types: SymbolTable,
type_assertions: Vec<TypeAssertion>, type_assertions: Vec<TypeAssertion>,
type_variables: HashSet<TypeVariable>, variable_table: VariableTable,
} }
impl FunctionBody { impl FunctionBody {
@ -107,18 +107,21 @@ impl FunctionBody {
// Get function type from symbol table. // Get function type from symbol table.
let function_type = symbol_table.get_function(name).unwrap().clone(); let function_type = symbol_table.get_function(name).unwrap().clone();
// Build symbol table for variables.
let mut variable_table = VariableTable::new();
// Initialize function inputs as variables.
variable_table.parse_function_inputs(&function_type.inputs);
// Create new function body struct. // Create new function body struct.
// Update variables when encountering let/const variable definitions.
let mut function_body = Self { let mut function_body = Self {
function_type, function_type,
symbol_table, user_defined_types: symbol_table,
type_assertions: vec![], type_assertions: vec![],
type_variables: HashSet::new(), variable_table,
}; };
// Build symbol table for variables.
// Initialize function inputs as variables.
// Update inputs when encountering let/const variable definitions.
// Create type assertions for function statements // Create type assertions for function statements
function_body.parse_statements(&function.statements); function_body.parse_statements(&function.statements);
@ -157,7 +160,7 @@ impl FunctionBody {
let left = TypeElement::Type(output_type.clone()); let left = TypeElement::Type(output_type.clone());
// Create the right hand side from the statement return expression. // Create the right hand side from the statement return expression.
let right = TypeElement::new(expression, self.symbol_table.clone()); let right = TypeElement::new(expression, self.user_defined_types.clone());
// Create a new type assertion for the statement return. // Create a new type assertion for the statement return.
let type_assertion = TypeAssertion::new(left, right); let type_assertion = TypeAssertion::new(left, right);
@ -198,6 +201,44 @@ impl FunctionBody {
} }
} }
/// A structure for tracking the types of user defined variables in a program.
#[derive(Clone)]
pub struct VariableTable(pub HashMap<String, Type>);
impl VariableTable {
///
/// Return a new variable table
///
pub fn new() -> Self {
Self(HashMap::new())
}
///
/// Insert a name -> type pair into the variable table.
///
/// If the variable table did not have this key present, [`None`] is returned.
///
/// If the variable table did have this key present, the type is updated, and the old
/// type is returned.
///
pub fn insert(&mut self, name: String, type_: Type) -> Option<Type> {
self.0.insert(name, type_)
}
///
/// Inserts a vector of function input types into the variable table.
///
pub fn parse_function_inputs(&mut self, function_inputs: &Vec<FunctionInputType>) {
for input in function_inputs {
let input_name = input.identifier().name.clone();
let input_type = input.type_().clone();
// TODO (collinc97) throw an error for duplicate function input names.
self.insert(input_name, input_type);
}
}
}
/// A predicate that evaluates equality between two `TypeElement`s. /// A predicate that evaluates equality between two `TypeElement`s.
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize)] #[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct TypeAssertion { pub struct TypeAssertion {

View File

@ -15,7 +15,7 @@
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>. // along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{SymbolTable, SymbolTableError}; use crate::{SymbolTable, SymbolTableError};
use leo_typed::Program as UnresolvedProgram; use leo_typed::Program;
/// Performs a static type check over a program. /// Performs a static type check over a program.
pub struct StaticCheck { pub struct StaticCheck {
@ -26,7 +26,7 @@ impl StaticCheck {
/// ///
/// Return a new `StaticCheck` from a given program. /// Return a new `StaticCheck` from a given program.
/// ///
pub fn new(program: &UnresolvedProgram) -> Result<SymbolTable, SymbolTableError> { pub fn new(program: &Program) -> Result<SymbolTable, SymbolTableError> {
let mut check = Self { let mut check = Self {
table: SymbolTable::new(None), table: SymbolTable::new(None),
}; };
@ -46,7 +46,7 @@ impl StaticCheck {
/// If a circuit or function name has no duplicates, then it is inserted into the symbol table. /// If a circuit or function name has no duplicates, then it is inserted into the symbol table.
/// Variables defined later in the unresolved program cannot have the same name. /// Variables defined later in the unresolved program cannot have the same name.
/// ///
pub fn pass_one(&mut self, program: &UnresolvedProgram) -> Result<(), SymbolTableError> { pub fn pass_one(&mut self, program: &Program) -> Result<(), SymbolTableError> {
// Check unresolved program circuit names. // Check unresolved program circuit names.
self.table.check_duplicate_circuits(&program.circuits)?; self.table.check_duplicate_circuits(&program.circuits)?;
@ -63,7 +63,7 @@ impl StaticCheck {
/// symbol table. Variables defined later in the unresolved program can lookup the definition and /// symbol table. Variables defined later in the unresolved program can lookup the definition and
/// refer to its expected types. /// refer to its expected types.
/// ///
pub fn pass_two(&mut self, program: &UnresolvedProgram) -> Result<(), SymbolTableError> { pub fn pass_two(&mut self, program: &Program) -> Result<(), SymbolTableError> {
// Check unresolved program circuit definitions. // Check unresolved program circuit definitions.
self.table.check_unknown_types_circuits(&program.circuits)?; self.table.check_unknown_types_circuits(&program.circuits)?;