use crate::{ assert_satisfied, expect_synthesis_error, generate_main_input, get_output, parse_program, parse_program_with_input, EdwardsTestCompiler, }; use leo_input::types::{IntegerType, U32Type}; use leo_typed::InputValue; #[test] fn test_assert() { let bytes = include_bytes!("assert.leo"); let mut program_1_pass = parse_program(bytes).unwrap(); let mut program_0_pass = program_1_pass.clone(); let mut program_2_fail = program_1_pass.clone(); // Check that an input value of 1 satisfies the constraint system let main_input = generate_main_input(vec![( "a", Some(InputValue::Integer(IntegerType::U32Type(U32Type {}), 1.to_string())), )]); program_1_pass.set_main_input(main_input); assert_satisfied(program_1_pass); // Check that an input value of 0 satisfies the constraint system let main_input = generate_main_input(vec![( "a", Some(InputValue::Integer(IntegerType::U32Type(U32Type {}), 0.to_string())), )]); program_0_pass.set_main_input(main_input); assert_satisfied(program_0_pass); // Check that an input value of 2 does not satisfy the constraint system let main_input = generate_main_input(vec![( "a", Some(InputValue::Integer(IntegerType::U32Type(U32Type {}), 2.to_string())), )]); program_2_fail.set_main_input(main_input); expect_synthesis_error(program_2_fail); } #[test] fn test_mutate() { let bytes = include_bytes!("mutate.leo"); let mut program_1_pass = parse_program(bytes).unwrap(); let mut program_0_pass = program_1_pass.clone(); // Check that an input value of 1 satisfies the constraint system let main_input = generate_main_input(vec![( "a", Some(InputValue::Integer(IntegerType::U32Type(U32Type {}), 1.to_string())), )]); program_1_pass.set_main_input(main_input); assert_satisfied(program_1_pass); // Check that an input value of 0 satisfies the constraint system let main_input = generate_main_input(vec![( "a", Some(InputValue::Integer(IntegerType::U32Type(U32Type {}), 0.to_string())), )]); program_0_pass.set_main_input(main_input); assert_satisfied(program_0_pass); } #[test] fn test_for_loop() { let bytes = include_bytes!("for_loop.leo"); let mut program_true_6 = parse_program(bytes).unwrap(); let mut program_false_0 = program_true_6.clone(); // Check that an input value of true satisfies the constraint system let main_input = generate_main_input(vec![("a", Some(InputValue::Boolean(true)))]); program_true_6.set_main_input(main_input); assert_satisfied(program_true_6); // Check that an input value of false satisfies the constraint system let main_input = generate_main_input(vec![("a", Some(InputValue::Boolean(false)))]); program_false_0.set_main_input(main_input); assert_satisfied(program_false_0); } #[test] fn test_chain() { let bytes = include_bytes!("chain.leo"); let mut program_1_1 = parse_program(bytes).unwrap(); let mut program_2_2 = program_1_1.clone(); let mut program_4_3 = program_1_1.clone(); // Check that an input of 1 outputs 1 let main_input = generate_main_input(vec![ ( "a", Some(InputValue::Integer(IntegerType::U32Type(U32Type {}), 1.to_string())), ), ( "b", Some(InputValue::Integer(IntegerType::U32Type(U32Type {}), 1.to_string())), ), ]); program_1_1.set_main_input(main_input); assert_satisfied(program_1_1); // Check that an input of 2 outputs 2 let main_input = generate_main_input(vec![ ( "a", Some(InputValue::Integer(IntegerType::U32Type(U32Type {}), 2.to_string())), ), ( "b", Some(InputValue::Integer(IntegerType::U32Type(U32Type {}), 2.to_string())), ), ]); program_2_2.set_main_input(main_input); assert_satisfied(program_2_2); // Check that an input of 4 outputs 3 let main_input = generate_main_input(vec![ ( "a", Some(InputValue::Integer(IntegerType::U32Type(U32Type {}), 4.to_string())), ), ( "b", Some(InputValue::Integer(IntegerType::U32Type(U32Type {}), 3.to_string())), ), ]); program_4_3.set_main_input(main_input); assert_satisfied(program_4_3); } #[test] fn test_nested() { let bytes = include_bytes!("nested.leo"); let mut program_true_true_3 = parse_program(bytes).unwrap(); let mut program_true_false_1 = program_true_true_3.clone(); let mut program_false_false_0 = program_true_true_3.clone(); // Check that an input value of true true outputs 3 let main_input = generate_main_input(vec![ ("a", Some(InputValue::Boolean(true))), ("b", Some(InputValue::Boolean(true))), ( "c", Some(InputValue::Integer(IntegerType::U32Type(U32Type {}), 3.to_string())), ), ]); program_true_true_3.set_main_input(main_input); assert_satisfied(program_true_true_3); // Check that an input value of true false outputs 1 let main_input = generate_main_input(vec![ ("a", Some(InputValue::Boolean(true))), ("b", Some(InputValue::Boolean(false))), ( "c", Some(InputValue::Integer(IntegerType::U32Type(U32Type {}), 1.to_string())), ), ]); program_true_false_1.set_main_input(main_input); assert_satisfied(program_true_false_1); // Check that an input value of false false outputs 0 let main_input = generate_main_input(vec![ ("a", Some(InputValue::Boolean(false))), ("b", Some(InputValue::Boolean(false))), ( "c", Some(InputValue::Integer(IntegerType::U32Type(U32Type {}), 0.to_string())), ), ]); program_false_false_0.set_main_input(main_input); assert_satisfied(program_false_false_0); } fn output_one(program: EdwardsTestCompiler) { let expected = include_bytes!("output_/registers_one.out"); let actual = get_output(program); assert_eq!(expected, actual.bytes().as_slice()); } fn output_zero(program: EdwardsTestCompiler) { let expected = include_bytes!("output_/registers_zero.out"); let actual = get_output(program); assert_eq!(expected, actual.bytes().as_slice()); } #[test] fn test_multiple_returns() { let program_bytes = include_bytes!("multiple_returns.leo"); // Check that an input value of 1 writes 1 to the output registers let registers_one_bytes = include_bytes!("input/registers_one.in"); let program = parse_program_with_input(program_bytes, registers_one_bytes).unwrap(); output_one(program); // Check that an input value of 0 writes 0 to the output registers let registers_zero_bytes = include_bytes!("input/registers_zero.in"); let program = parse_program_with_input(program_bytes, registers_zero_bytes).unwrap(); output_zero(program); }