
canonical AST bundle

lexing/parsing

.leo file(s)

AST(s)

AST (bundle)

Leo program = one or more files
(i.e. main file + package files)

(packages may be local or in APM)

one AST per file

one structure with file ASTs
and their import relationships

(just one AST if no imports)

lex/parse each file
individually into AST

AST (bundle)

find and lex/parse package files
transitively referenced by main file import resolution

canonicalization

ASG

ASG conversion

type checking/inference

IR translation

flattening

R1CS generation

ASG

IR

IR

R1CS

expand Self, type aliases, etc.

re-organize information
to share structure

program representation
with shared structure

check and infer types
+ other things that could be in separate phases

(e.g. check global constant circularities)

inferred and checked type information

translate to Leo intermediate representation

inline imports, inline functions, unroll loops,
decompose circuits and arrays, etc.

turn flattened IR to R1CS
(could go to PFCS then R1CS)

flattened IR program

IR program with some of the original structure

list of R1CS constraints
(zero-knowledge circuit)

theorem generator/checker
for lexing/parsing

theorem generator/checker
for canonicalization

theorem generator/checker
for type checking/inference

AST (bundle)AST conversion

alternative: represent ASG in the theorem prover

theorem generator/checker
for IR translation

theorem generator/checker
for flattening

theorem generator/checker
for R1CS generation

JSON

Q.E.D.

Q.E.D.

Q.E.D.

Q.E.D.

Q.E.D.

Q.E.D.

AND Q.E.D.

theorem generator/checker
for end-to-end Leo compilation

JSON

JSON

JSON

JSON

JSON

JSON

theorem generator/checker
for import resolution Q.E.D.

Leo Compiler Phases and Associated ACL2 Theorems

Note: it may be possible or useful to split some of the phases above into multiple (sub)phases.


