quivr/backend/vectorstore/supabase.py

58 lines
1.6 KiB
Python
Raw Normal View History

2023-06-19 21:15:34 +03:00
from typing import Any, List
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
2023-06-19 21:15:34 +03:00
from langchain.vectorstores import SupabaseVectorStore
from supabase.client import Client
2023-06-19 21:15:34 +03:00
class CustomSupabaseVectorStore(SupabaseVectorStore):
"""A custom vector store that uses the match_vectors table instead of the vectors table."""
2023-06-28 20:39:27 +03:00
brain_id: str = "none"
def __init__(
self,
client: Client,
embedding: Embeddings,
table_name: str,
2023-06-28 20:39:27 +03:00
brain_id: str = "none",
):
2023-06-19 21:15:34 +03:00
super().__init__(client, embedding, table_name)
2023-06-28 20:39:27 +03:00
self.brain_id = brain_id
2023-06-19 21:15:34 +03:00
def similarity_search(
self,
query: str,
k: int = 6,
table: str = "match_vectors",
threshold: float = 0.5,
2023-06-19 21:15:34 +03:00
**kwargs: Any
) -> List[Document]:
vectors = self._embedding.embed_documents([query])
query_embedding = vectors[0]
res = self._client.rpc(
table,
{
"query_embedding": query_embedding,
"match_count": k,
2023-06-28 20:39:27 +03:00
"p_brain_id": str(self.brain_id),
2023-06-19 21:15:34 +03:00
},
).execute()
match_result = [
(
Document(
metadata=search.get("metadata", {}), # type: ignore
page_content=search.get("content", ""),
),
search.get("similarity", 0.0),
)
for search in res.data
if search.get("content")
]
documents = [doc for doc, _ in match_result]
return documents