quivr/backend/repository/chat/get_chat_history.py

57 lines
1.8 KiB
Python
Raw Normal View History

from typing import List, Optional
from uuid import UUID
from models import ChatHistory, get_supabase_db
from pydantic import BaseModel
from repository.brain import get_brain_by_id
from repository.prompt import get_prompt_by_id
class GetChatHistoryOutput(BaseModel):
chat_id: UUID
message_id: UUID
user_message: str
assistant: str
message_time: str
prompt_title: Optional[str] | None
brain_name: Optional[str] | None
def dict(self, *args, **kwargs):
chat_history = super().dict(*args, **kwargs)
2023-08-10 19:35:30 +03:00
chat_history["chat_id"] = str(chat_history.get("chat_id"))
chat_history["message_id"] = str(chat_history.get("message_id"))
return chat_history
def get_chat_history(chat_id: str) -> List[GetChatHistoryOutput]:
supabase_db = get_supabase_db()
history: List[dict] = supabase_db.get_chat_history(chat_id).data
if history is None:
return []
else:
enriched_history: List[GetChatHistoryOutput] = []
for message in history:
message = ChatHistory(message)
brain = None
if message.brain_id:
brain = get_brain_by_id(message.brain_id)
prompt = None
if message.prompt_id:
prompt = get_prompt_by_id(message.prompt_id)
enriched_history.append(
GetChatHistoryOutput(
chat_id=(UUID(message.chat_id)),
message_id=(UUID(message.message_id)),
user_message=message.user_message,
assistant=message.assistant,
message_time=message.message_time,
brain_name=brain.name if brain else None,
prompt_title=prompt.title if prompt else None,
)
)
return enriched_history