quivr/scripts/pg_tables.sql

225 lines
5.4 KiB
MySQL
Raw Normal View History

CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
-- Create users table
CREATE TABLE IF NOT EXISTS user_daily_usage(
user_id UUID DEFAULT uuid_generate_v4() PRIMARY KEY,
email TEXT,
date TEXT,
daily_requests_count INT
);
-- Create chats table
CREATE TABLE IF NOT EXISTS chats(
chat_id UUID DEFAULT uuid_generate_v4() PRIMARY KEY,
user_id UUID REFERENCES users(user_id),
creation_time TIMESTAMP DEFAULT current_timestamp,
history JSONB,
chat_name TEXT
);
-- Create chat_history table
CREATE TABLE IF NOT EXISTS chat_history (
message_id UUID DEFAULT uuid_generate_v4(),
chat_id UUID REFERENCES chats(chat_id),
user_message TEXT,
assistant TEXT,
message_time TIMESTAMP DEFAULT current_timestamp,
PRIMARY KEY (chat_id, message_id)
);
-- Create vector extension
CREATE EXTENSION IF NOT EXISTS vector;
-- Create vectors table
CREATE TABLE IF NOT EXISTS vectors (
id UUID DEFAULT uuid_generate_v4() PRIMARY KEY,
content TEXT,
metadata JSONB,
embedding VECTOR(1536)
);
-- Create function to match vectors
CREATE OR REPLACE FUNCTION match_vectors(query_embedding VECTOR(1536), match_count INT, p_brain_id UUID)
RETURNS TABLE(
id UUID,
brain_id UUID,
content TEXT,
metadata JSONB,
embedding VECTOR(1536),
similarity FLOAT
) LANGUAGE plpgsql AS $$
#variable_conflict use_column
BEGIN
RETURN QUERY
SELECT
vectors.id,
brains_vectors.brain_id,
vectors.content,
vectors.metadata,
vectors.embedding,
1 - (vectors.embedding <=> query_embedding) AS similarity
FROM
vectors
INNER JOIN
brains_vectors ON vectors.id = brains_vectors.vector_id
WHERE brains_vectors.brain_id = p_brain_id
ORDER BY
vectors.embedding <=> query_embedding
LIMIT match_count;
END;
$$;
-- Create stats table
CREATE TABLE IF NOT EXISTS stats (
time TIMESTAMP,
chat BOOLEAN,
embedding BOOLEAN,
details TEXT,
metadata JSONB,
id INTEGER PRIMARY KEY GENERATED ALWAYS AS IDENTITY
);
-- Create summaries table
CREATE TABLE IF NOT EXISTS summaries (
id BIGSERIAL PRIMARY KEY,
document_id UUID REFERENCES vectors(id),
content TEXT,
metadata JSONB,
embedding VECTOR(1536)
);
-- Create function to match summaries
CREATE OR REPLACE FUNCTION match_summaries(query_embedding VECTOR(1536), match_count INT, match_threshold FLOAT)
RETURNS TABLE(
id BIGINT,
document_id UUID,
content TEXT,
metadata JSONB,
embedding VECTOR(1536),
similarity FLOAT
) LANGUAGE plpgsql AS $$
#variable_conflict use_column
BEGIN
RETURN QUERY
SELECT
id,
document_id,
content,
metadata,
embedding,
1 - (summaries.embedding <=> query_embedding) AS similarity
FROM
summaries
WHERE 1 - (summaries.embedding <=> query_embedding) > match_threshold
ORDER BY
summaries.embedding <=> query_embedding
LIMIT match_count;
END;
$$;
-- Create api_keys table
CREATE TABLE IF NOT EXISTS api_keys(
key_id UUID DEFAULT gen_random_uuid() PRIMARY KEY,
user_id UUID REFERENCES users(user_id),
api_key TEXT UNIQUE,
creation_time TIMESTAMP DEFAULT current_timestamp,
deleted_time TIMESTAMP,
is_active BOOLEAN DEFAULT true
);
-- Create brains table
CREATE TABLE IF NOT EXISTS brains (
brain_id UUID DEFAULT gen_random_uuid() PRIMARY KEY,
name TEXT,
status TEXT,
model TEXT,
max_tokens TEXT,
temperature FLOAT
);
-- Create brains X users table
CREATE TABLE IF NOT EXISTS brains_users (
brain_id UUID,
user_id UUID,
rights VARCHAR(255),
default_brain BOOLEAN DEFAULT false,
PRIMARY KEY (brain_id, user_id),
FOREIGN KEY (user_id) REFERENCES users(user_id),
FOREIGN KEY (brain_id) REFERENCES brains (brain_id)
);
-- Create brains X vectors table
CREATE TABLE IF NOT EXISTS brains_vectors (
brain_id UUID,
vector_id UUID,
file_sha1 TEXT,
PRIMARY KEY (brain_id, vector_id),
FOREIGN KEY (vector_id) REFERENCES vectors (id),
FOREIGN KEY (brain_id) REFERENCES brains (brain_id)
);
-- Create brains X vectors table
CREATE TABLE IF NOT EXISTS brain_subscription_invitations (
brain_id UUID,
email VARCHAR(255),
rights VARCHAR(255),
PRIMARY KEY (brain_id, email),
FOREIGN KEY (brain_id) REFERENCES brains (brain_id)
);
-- Create functions for secrets in vault
CREATE OR REPLACE FUNCTION insert_secret(name text, secret text)
returns uuid
language plpgsql
security definer
set search_path = public
as $$
begin
return vault.create_secret(secret, name);
end;
$$;
create or replace function read_secret(secret_name text)
returns text
language plpgsql
security definer set search_path = public
as $$
declare
secret text;
begin
select decrypted_secret from vault.decrypted_secrets where name =
secret_name into secret;
return secret;
end;
$$;
create or replace function delete_secret(secret_name text)
returns text
language plpgsql
security definer set search_path = public
as $$
declare
deleted_rows int;
begin
delete from vault.decrypted_secrets where name = secret_name;
get diagnostics deleted_rows = row_count;
if deleted_rows = 0 then
return false;
else
return true;
end if;
end;
$$;
CREATE TABLE IF NOT EXISTS migrations (
name VARCHAR(255) PRIMARY KEY,
executed_at TIMESTAMPTZ DEFAULT current_timestamp
);
INSERT INTO migrations (name)
SELECT '20231107104700_setup_vault'
WHERE NOT EXISTS (
SELECT 1 FROM migrations WHERE name = '20231107104700_setup_vault'
);