quivr/backend/utils.py

130 lines
4.2 KiB
Python
Raw Normal View History

2023-05-13 00:05:31 +03:00
import hashlib
2023-05-22 09:39:55 +03:00
import os
from typing import Annotated, List, Tuple
from fastapi import Depends, UploadFile
2023-05-22 09:39:55 +03:00
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.schema import Document
from langchain.vectorstores import SupabaseVectorStore
2023-05-22 09:39:55 +03:00
from llm.summarization import llm_summerize
from logger import get_logger
from pydantic import BaseModel
from supabase import Client, create_client
2023-05-22 09:39:55 +03:00
logger = get_logger(__name__)
openai_api_key = os.environ.get("OPENAI_API_KEY")
anthropic_api_key = os.environ.get("ANTHROPIC_API_KEY")
supabase_url = os.environ.get("SUPABASE_URL")
supabase_key = os.environ.get("SUPABASE_SERVICE_KEY")
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
supabase_client: Client = create_client(supabase_url, supabase_key)
documents_vector_store = SupabaseVectorStore(
supabase_client, embeddings, table_name="vectors")
2023-05-22 09:39:55 +03:00
summaries_vector_store = SupabaseVectorStore(
supabase_client, embeddings, table_name="summaries")
2023-05-13 00:05:31 +03:00
def compute_sha1_from_file(file_path):
with open(file_path, "rb") as file:
2023-05-22 09:39:55 +03:00
bytes = file.read()
readable_hash = compute_sha1_from_content(bytes)
2023-05-13 00:05:31 +03:00
return readable_hash
2023-05-22 09:39:55 +03:00
2023-05-13 00:05:31 +03:00
def compute_sha1_from_content(content):
readable_hash = hashlib.sha1(content).hexdigest()
return readable_hash
2023-05-22 09:39:55 +03:00
def common_dependencies():
return {
"supabase": supabase_client,
"embeddings": embeddings,
"documents_vector_store": documents_vector_store,
"summaries_vector_store": summaries_vector_store
}
CommonsDep = Annotated[dict, Depends(common_dependencies)]
class ChatMessage(BaseModel):
model: str = "gpt-3.5-turbo"
question: str
# A list of tuples where each tuple is (speaker, text)
history: List[Tuple[str, str]]
temperature: float = 0.0
max_tokens: int = 256
use_summarization: bool = False
def create_summary(document_id, content, metadata):
logger.info(f"Summarizing document {content[:100]}")
summary = llm_summerize(content)
logger.info(f"Summary: {summary}")
metadata['document_id'] = document_id
summary_doc_with_metadata = Document(
page_content=summary, metadata=metadata)
sids = summaries_vector_store.add_documents(
[summary_doc_with_metadata])
if sids and len(sids) > 0:
supabase_client.table("summaries").update(
{"document_id": document_id}).match({"id": sids[0]}).execute()
def create_vector(user_id,doc):
logger.info(f"Creating vector for document")
logger.info(f"Document: {doc}")
sids = documents_vector_store.add_documents(
[doc])
if sids and len(sids) > 0:
supabase_client.table("vectors").update(
{"user_id": user_id}).match({"id": sids[0]}).execute()
def create_user(user_id, date):
logger.info(f"New user entry in db document for user {user_id}")
supabase_client.table("users").insert(
{"user_id": user_id, "date": date, "requests_count": 1}).execute()
def update_user_request_count(user_id, date, requests_count):
logger.info(f"User {user_id} request count updated to {requests_count}")
supabase_client.table("users").update(
{ "requests_count": requests_count}).match({"user_id": user_id, "date": date}).execute()
2023-05-22 09:39:55 +03:00
def create_embedding(content):
return embeddings.embed_query(content)
2023-05-22 09:39:55 +03:00
def similarity_search(query, table='match_summaries', top_k=5, threshold=0.5):
query_embedding = create_embedding(query)
summaries = supabase_client.rpc(
table, {'query_embedding': query_embedding,
'match_count': top_k, 'match_threshold': threshold}
).execute()
return summaries.data
def get_file_size(file: UploadFile):
# move the cursor to the end of the file
file.file._file.seek(0, 2)
file_size = file.file._file.tell() # Getting the size of the file
# move the cursor back to the beginning of the file
file.file.seek(0)
return file_size
def convert_bytes(bytes, precision=2):
"""Converts bytes into a human-friendly format."""
abbreviations = ['B', 'KB', 'MB']
if bytes <= 0:
return '0 B'
size = bytes
index = 0
while size >= 1024 and index < len(abbreviations) - 1:
size /= 1024
index += 1
return f'{size:.{precision}f} {abbreviations[index]}'