quivr/backend/core/tests/fixture_chunks.py

42 lines
1.4 KiB
Python
Raw Normal View History

import asyncio
import json
from uuid import uuid4
from langchain_core.embeddings import DeterministicFakeEmbedding
from langchain_core.messages.ai import AIMessageChunk
from langchain_core.vectorstores import InMemoryVectorStore
from quivr_core.chat import ChatHistory
from quivr_core.config import LLMEndpointConfig, RAGConfig
from quivr_core.llm import LLMEndpoint
from quivr_core.quivr_rag import QuivrQARAG
async def main():
rag_config = RAGConfig(llm_config=LLMEndpointConfig(model="gpt-4o"))
embedder = DeterministicFakeEmbedding(size=20)
vec = InMemoryVectorStore(embedder)
llm = LLMEndpoint.from_config(rag_config.llm_config)
chat_history = ChatHistory(uuid4(), uuid4())
rag_pipeline = QuivrQARAG(rag_config=rag_config, llm=llm, vector_store=vec)
conversational_qa_chain = rag_pipeline.build_chain("")
with open("response.jsonl", "w") as f:
async for chunk in conversational_qa_chain.astream(
{
"question": "What is NLP, give a very long detailed answer",
"chat_history": chat_history,
"custom_personality": None,
},
config={"metadata": {}},
):
dict_chunk = {
k: v.dict() if isinstance(v, AIMessageChunk) else v
for k, v in chunk.items()
}
f.write(json.dumps(dict_chunk) + "\n")
asyncio.run(main())