quivr/backend/core/models/settings.py

59 lines
1.7 KiB
Python
Raw Normal View History

from typing import Annotated
2023-06-19 23:46:25 +03:00
from fastapi import Depends
from langchain.embeddings.openai import OpenAIEmbeddings
from models.databases.supabase.supabase import SupabaseDB
from pydantic import BaseSettings
from supabase.client import Client, create_client
2023-06-19 23:46:25 +03:00
from vectorstore.supabase import SupabaseVectorStore
class BrainRateLimiting(BaseSettings):
max_brain_size: int = 52428800
max_brain_per_user: int = 5
class BrainSettings(BaseSettings):
openai_api_key: str
anthropic_api_key: str
supabase_url: str
supabase_service_key: str
pg_database_url: str
resend_api_key: str = "null"
resend_email_address: str = "brain@mail.quivr.app"
2023-06-19 23:46:25 +03:00
class LLMSettings(BaseSettings):
private: bool = False
model_path: str = "./local_models/ggml-gpt4all-j-v1.3-groovy.bin"
2023-06-19 23:46:25 +03:00
2023-06-19 23:46:25 +03:00
def common_dependencies() -> dict:
settings = BrainSettings() # pyright: ignore reportPrivateUsage=none
embeddings = OpenAIEmbeddings(
openai_api_key=settings.openai_api_key
) # pyright: ignore reportPrivateUsage=none
supabase_client: Client = create_client(
settings.supabase_url, settings.supabase_service_key
)
2023-06-19 23:46:25 +03:00
documents_vector_store = SupabaseVectorStore(
supabase_client, embeddings, table_name="vectors"
)
2023-06-19 23:46:25 +03:00
summaries_vector_store = SupabaseVectorStore(
supabase_client, embeddings, table_name="summaries"
)
db = None
db = SupabaseDB(supabase_client)
2023-06-19 23:46:25 +03:00
return {
"supabase": supabase_client,
"db": db,
2023-06-19 23:46:25 +03:00
"embeddings": embeddings,
"documents_vector_store": documents_vector_store,
"summaries_vector_store": summaries_vector_store,
2023-06-19 23:46:25 +03:00
}
CommonsDep = Annotated[dict, Depends(common_dependencies)]