2023-05-13 00:05:31 +03:00
|
|
|
import hashlib
|
2023-05-22 09:39:55 +03:00
|
|
|
import os
|
|
|
|
from typing import Annotated, List, Tuple
|
|
|
|
from fastapi import Depends
|
|
|
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
|
|
from langchain.vectorstores import SupabaseVectorStore
|
|
|
|
from pydantic import BaseModel
|
|
|
|
from supabase import create_client, Client
|
|
|
|
from langchain.schema import Document
|
|
|
|
|
|
|
|
from llm.summarization import llm_summerize
|
|
|
|
|
|
|
|
from logger import get_logger
|
|
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
openai_api_key = os.environ.get("OPENAI_API_KEY")
|
|
|
|
anthropic_api_key = os.environ.get("ANTHROPIC_API_KEY")
|
|
|
|
supabase_url = os.environ.get("SUPABASE_URL")
|
|
|
|
supabase_key = os.environ.get("SUPABASE_SERVICE_KEY")
|
|
|
|
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
|
|
|
supabase_client: Client = create_client(supabase_url, supabase_key)
|
|
|
|
documents_vector_store = SupabaseVectorStore(
|
|
|
|
supabase_client, embeddings, table_name="documents")
|
|
|
|
summaries_vector_store = SupabaseVectorStore(
|
|
|
|
supabase_client, embeddings, table_name="summaries")
|
|
|
|
|
2023-05-13 00:05:31 +03:00
|
|
|
|
|
|
|
def compute_sha1_from_file(file_path):
|
|
|
|
with open(file_path, "rb") as file:
|
2023-05-22 09:39:55 +03:00
|
|
|
bytes = file.read()
|
2023-05-20 00:13:46 +03:00
|
|
|
readable_hash = compute_sha1_from_content(bytes)
|
2023-05-13 00:05:31 +03:00
|
|
|
return readable_hash
|
|
|
|
|
2023-05-22 09:39:55 +03:00
|
|
|
|
2023-05-13 00:05:31 +03:00
|
|
|
def compute_sha1_from_content(content):
|
|
|
|
readable_hash = hashlib.sha1(content).hexdigest()
|
2023-05-20 00:13:46 +03:00
|
|
|
return readable_hash
|
2023-05-22 09:39:55 +03:00
|
|
|
|
|
|
|
|
|
|
|
def common_dependencies():
|
|
|
|
return {
|
|
|
|
"supabase": supabase_client,
|
|
|
|
"embeddings": embeddings,
|
|
|
|
"documents_vector_store": documents_vector_store,
|
|
|
|
"summaries_vector_store": summaries_vector_store
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CommonsDep = Annotated[dict, Depends(common_dependencies)]
|
|
|
|
|
|
|
|
|
|
|
|
class ChatMessage(BaseModel):
|
|
|
|
model: str = "gpt-3.5-turbo"
|
|
|
|
question: str
|
|
|
|
# A list of tuples where each tuple is (speaker, text)
|
|
|
|
history: List[Tuple[str, str]]
|
|
|
|
temperature: float = 0.0
|
|
|
|
max_tokens: int = 256
|
|
|
|
use_summarization: bool = False
|
|
|
|
|
|
|
|
|
|
|
|
def create_summary(document_id, content, metadata):
|
|
|
|
logger.info(f"Summarizing document {content[:100]}")
|
|
|
|
summary = llm_summerize(content)
|
|
|
|
logger.info(f"Summary: {summary}")
|
|
|
|
metadata['document_id'] = document_id
|
|
|
|
summary_doc_with_metadata = Document(
|
|
|
|
page_content=summary, metadata=metadata)
|
|
|
|
sids = summaries_vector_store.add_documents(
|
|
|
|
[summary_doc_with_metadata])
|
|
|
|
if sids and len(sids) > 0:
|
|
|
|
supabase_client.table("summaries").update(
|
|
|
|
{"document_id": document_id}).match({"id": sids[0]}).execute()
|
|
|
|
|
|
|
|
|
|
|
|
def create_embedding(content):
|
|
|
|
return embeddings.embed_query(content)
|
|
|
|
|
|
|
|
|
|
|
|
def similarity_search(query, table='match_summaries', top_k=5, threshold=0.5):
|
|
|
|
query_embedding = create_embedding(query)
|
|
|
|
summaries = supabase_client.rpc(
|
|
|
|
table, {'query_embedding': query_embedding,
|
|
|
|
'match_count': top_k, 'match_threshold': threshold}
|
|
|
|
).execute()
|
|
|
|
return summaries.data
|