2023-05-21 02:20:55 +03:00
|
|
|
import os
|
|
|
|
import tempfile
|
|
|
|
import time
|
2023-06-01 17:01:27 +03:00
|
|
|
|
2023-05-21 02:20:55 +03:00
|
|
|
import openai
|
2023-06-01 17:01:27 +03:00
|
|
|
from langchain.schema import Document
|
2023-05-21 02:20:55 +03:00
|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
2023-06-28 20:39:27 +03:00
|
|
|
from models.files import File
|
2023-06-19 23:46:25 +03:00
|
|
|
from models.settings import CommonsDep
|
2023-06-04 00:12:42 +03:00
|
|
|
from utils.file import compute_sha1_from_content
|
2023-05-21 02:20:55 +03:00
|
|
|
|
2023-05-22 09:39:55 +03:00
|
|
|
|
2023-06-28 20:39:27 +03:00
|
|
|
async def process_audio(commons: CommonsDep, file: File, enable_summarization: bool, user, user_openai_api_key):
|
2023-05-22 09:39:55 +03:00
|
|
|
|
2023-06-28 10:47:59 +03:00
|
|
|
temp_filename = None
|
2023-05-21 02:20:55 +03:00
|
|
|
file_sha = ""
|
|
|
|
dateshort = time.strftime("%Y%m%d-%H%M%S")
|
|
|
|
file_meta_name = f"audiotranscript_{dateshort}.txt"
|
|
|
|
|
2023-06-28 20:39:27 +03:00
|
|
|
# use this for whisper
|
2023-05-21 02:20:55 +03:00
|
|
|
openai_api_key = os.environ.get("OPENAI_API_KEY")
|
2023-06-11 00:59:16 +03:00
|
|
|
if user_openai_api_key:
|
|
|
|
openai_api_key = user_openai_api_key
|
2023-05-21 02:20:55 +03:00
|
|
|
|
2023-06-28 10:47:59 +03:00
|
|
|
try:
|
2023-06-28 20:39:27 +03:00
|
|
|
upload_file = file.file
|
2023-06-28 10:47:59 +03:00
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=upload_file.filename) as tmp_file:
|
|
|
|
await upload_file.seek(0)
|
|
|
|
content = await upload_file.read()
|
|
|
|
tmp_file.write(content)
|
|
|
|
tmp_file.flush()
|
|
|
|
tmp_file.close()
|
2023-05-21 02:20:55 +03:00
|
|
|
|
2023-06-28 10:47:59 +03:00
|
|
|
temp_filename = tmp_file.name
|
2023-05-21 02:20:55 +03:00
|
|
|
|
2023-06-28 10:47:59 +03:00
|
|
|
with open(tmp_file.name, "rb") as audio_file:
|
|
|
|
transcript = openai.Audio.transcribe("whisper-1", audio_file)
|
2023-05-21 02:20:55 +03:00
|
|
|
|
2023-06-28 10:47:59 +03:00
|
|
|
file_sha = compute_sha1_from_content(transcript.text.encode("utf-8"))
|
|
|
|
file_size = len(transcript.text.encode("utf-8"))
|
2023-05-21 02:20:55 +03:00
|
|
|
|
2023-06-28 10:47:59 +03:00
|
|
|
chunk_size = 500
|
|
|
|
chunk_overlap = 0
|
2023-05-21 02:20:55 +03:00
|
|
|
|
2023-06-28 10:47:59 +03:00
|
|
|
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
|
|
|
chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
|
|
|
texts = text_splitter.split_text(transcript.text.encode("utf-8"))
|
2023-05-21 02:20:55 +03:00
|
|
|
|
2023-06-28 10:47:59 +03:00
|
|
|
docs_with_metadata = [Document(page_content=text, metadata={"file_sha1": file_sha, "file_size": file_size, "file_name": file_meta_name,
|
|
|
|
"chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort}) for text in texts]
|
|
|
|
|
|
|
|
commons.documents_vector_store.add_documents(docs_with_metadata)
|
|
|
|
|
|
|
|
finally:
|
|
|
|
if temp_filename and os.path.exists(temp_filename):
|
2023-06-28 20:39:27 +03:00
|
|
|
os.remove(temp_filename)
|