mirror of
https://github.com/QuivrHQ/quivr.git
synced 2024-12-14 17:03:29 +03:00
feat(public): release source code
This commit is contained in:
parent
b944d19a28
commit
0d2bbc5539
90
README.md
90
README.md
@ -21,7 +21,7 @@ These instructions will get you a copy of the project up and running on your loc
|
||||
|
||||
What things you need to install the software and how to install them.
|
||||
|
||||
- Python 3.6 or higher
|
||||
- Python 3.10 or higher
|
||||
- Pip
|
||||
- Virtualenv
|
||||
- Supabase account
|
||||
@ -30,11 +30,99 @@ What things you need to install the software and how to install them.
|
||||
|
||||
### Installing
|
||||
|
||||
- Clone the repository
|
||||
|
||||
```bash
|
||||
git clone
|
||||
```
|
||||
|
||||
- Create a virtual environment
|
||||
|
||||
```bash
|
||||
virtualenv venv
|
||||
```
|
||||
|
||||
- Activate the virtual environment
|
||||
|
||||
```bash
|
||||
source venv/bin/activate
|
||||
```
|
||||
|
||||
- Install the dependencies
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
- Create a streamlit secrets.toml file
|
||||
|
||||
```bash
|
||||
touch secrets.toml
|
||||
```
|
||||
|
||||
- Add the following to the secrets.toml file
|
||||
|
||||
```toml
|
||||
supabase_url = "SUPABASE_URL"
|
||||
supabase_service_key = "SUPABASE_SERVICE_KEY"
|
||||
openai_api_key = "OPENAI_API_KEY"
|
||||
```
|
||||
|
||||
- Run the migration script on the Supabase database
|
||||
|
||||
```sql
|
||||
-- Enable the pgvector extension to work with embedding vectors
|
||||
create extension vector;
|
||||
|
||||
-- Create a table to store your documents
|
||||
create table documents (
|
||||
id bigserial primary key,
|
||||
content text, -- corresponds to Document.pageContent
|
||||
metadata jsonb, -- corresponds to Document.metadata
|
||||
embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed
|
||||
);
|
||||
|
||||
CREATE FUNCTION match_documents(query_embedding vector(1536), match_count int)
|
||||
RETURNS TABLE(
|
||||
id bigint,
|
||||
content text,
|
||||
metadata jsonb,
|
||||
-- we return matched vectors to enable maximal marginal relevance searches
|
||||
embedding vector(1536),
|
||||
similarity float)
|
||||
LANGUAGE plpgsql
|
||||
AS $$
|
||||
# variable_conflict use_column
|
||||
BEGIN
|
||||
RETURN query
|
||||
SELECT
|
||||
id,
|
||||
content,
|
||||
metadata,
|
||||
embedding,
|
||||
1 -(documents.embedding <=> query_embedding) AS similarity
|
||||
FROM
|
||||
documents
|
||||
ORDER BY
|
||||
documents.embedding <=> query_embedding
|
||||
LIMIT match_count;
|
||||
END;
|
||||
$$;
|
||||
```
|
||||
|
||||
- Run the app
|
||||
|
||||
```bash
|
||||
streamlit run main.py
|
||||
```
|
||||
|
||||
## Built With
|
||||
|
||||
* [Python](https://www.python.org/) - The programming language used.
|
||||
* [Streamlit](https://streamlit.io/) - The web framework used.
|
||||
* [Supabase](https://supabase.io/) - The open source Firebase alternative.
|
||||
|
||||
## Contributing
|
||||
|
||||
Open a pull request and we'll review it as soon as possible.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user