mirror of
https://github.com/QuivrHQ/quivr.git
synced 2024-12-14 17:03:29 +03:00
feat: add custom rag first abstraction layer (#1858)
- Add `QAInterface` which should be implemented by all custom answer generator to be compatible with Quivr - Add `RAGInterface` which should be implemented by all RAG classes
This commit is contained in:
parent
e0362e7122
commit
512b9b4f37
@ -14,6 +14,7 @@ from modules.chat.dto.outputs import GetChatHistoryOutput
|
||||
from modules.chat.service.chat_service import ChatService
|
||||
|
||||
from llm.knowledge_brain_qa import KnowledgeBrainQA
|
||||
from llm.qa_interface import QAInterface
|
||||
from llm.utils.call_brain_api import call_brain_api
|
||||
from llm.utils.get_api_brain_definition_as_json_schema import (
|
||||
get_api_brain_definition_as_json_schema,
|
||||
@ -25,9 +26,7 @@ chat_service = ChatService()
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class APIBrainQA(
|
||||
KnowledgeBrainQA,
|
||||
):
|
||||
class APIBrainQA(KnowledgeBrainQA, QAInterface):
|
||||
user_id: UUID
|
||||
|
||||
def __init__(
|
||||
|
@ -4,32 +4,22 @@ from typing import AsyncIterable, Awaitable, List, Optional
|
||||
from uuid import UUID
|
||||
|
||||
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
|
||||
from langchain.chains import ConversationalRetrievalChain, LLMChain
|
||||
from langchain.chains.question_answering import load_qa_chain
|
||||
from langchain.chat_models import ChatLiteLLM
|
||||
from langchain.embeddings.ollama import OllamaEmbeddings
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
from langchain.llms.base import BaseLLM
|
||||
from langchain.prompts.chat import (
|
||||
ChatPromptTemplate,
|
||||
HumanMessagePromptTemplate,
|
||||
SystemMessagePromptTemplate,
|
||||
)
|
||||
from llm.utils.format_chat_history import format_chat_history
|
||||
from llm.utils.get_prompt_to_use import get_prompt_to_use
|
||||
from llm.utils.get_prompt_to_use_id import get_prompt_to_use_id
|
||||
from langchain.chains import ConversationalRetrievalChain
|
||||
from logger import get_logger
|
||||
from models import BrainSettings # Importing settings related to the 'brain'
|
||||
from models import BrainSettings
|
||||
from modules.brain.service.brain_service import BrainService
|
||||
from modules.chat.dto.chats import ChatQuestion
|
||||
from modules.chat.dto.inputs import CreateChatHistory
|
||||
from modules.chat.dto.outputs import GetChatHistoryOutput
|
||||
from modules.chat.service.chat_service import ChatService
|
||||
from pydantic import BaseModel
|
||||
from supabase.client import Client, create_client
|
||||
from vectorstore.supabase import CustomSupabaseVectorStore
|
||||
|
||||
from .prompts.CONDENSE_PROMPT import CONDENSE_QUESTION_PROMPT
|
||||
from llm.qa_interface import QAInterface
|
||||
from llm.rags.quivr_rag import QuivrRAG
|
||||
from llm.rags.rag_interface import RAGInterface
|
||||
from llm.utils.format_chat_history import format_chat_history
|
||||
from llm.utils.get_prompt_to_use import get_prompt_to_use
|
||||
from llm.utils.get_prompt_to_use_id import get_prompt_to_use_id
|
||||
|
||||
logger = get_logger(__name__)
|
||||
QUIVR_DEFAULT_PROMPT = "Your name is Quivr. You're a helpful assistant. If you don't know the answer, just say that you don't know, don't try to make up an answer."
|
||||
@ -39,7 +29,7 @@ brain_service = BrainService()
|
||||
chat_service = ChatService()
|
||||
|
||||
|
||||
class KnowledgeBrainQA(BaseModel):
|
||||
class KnowledgeBrainQA(BaseModel, QAInterface):
|
||||
"""
|
||||
Main class for the Brain Picking functionality.
|
||||
It allows to initialize a Chat model, generate questions and retrieve answers using ConversationalRetrievalChain.
|
||||
@ -52,7 +42,6 @@ class KnowledgeBrainQA(BaseModel):
|
||||
class Config:
|
||||
"""Configuration of the Pydantic Object"""
|
||||
|
||||
# Allowing arbitrary types for class validation
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
# Instantiate settings
|
||||
@ -65,36 +54,12 @@ class KnowledgeBrainQA(BaseModel):
|
||||
brain_id: str = None # pyright: ignore reportPrivateUsage=none
|
||||
max_tokens: int = 256
|
||||
streaming: bool = False
|
||||
knowledge_qa: Optional[RAGInterface]
|
||||
|
||||
callbacks: List[
|
||||
AsyncIteratorCallbackHandler
|
||||
] = None # pyright: ignore reportPrivateUsage=none
|
||||
|
||||
def _determine_streaming(self, model: str, streaming: bool) -> bool:
|
||||
"""If the model name allows for streaming and streaming is declared, set streaming to True."""
|
||||
return streaming
|
||||
|
||||
def _determine_callback_array(
|
||||
self, streaming
|
||||
) -> List[AsyncIteratorCallbackHandler]: # pyright: ignore reportPrivateUsage=none
|
||||
"""If streaming is set, set the AsyncIteratorCallbackHandler as the only callback."""
|
||||
if streaming:
|
||||
return [
|
||||
AsyncIteratorCallbackHandler() # pyright: ignore reportPrivateUsage=none
|
||||
]
|
||||
|
||||
@property
|
||||
def embeddings(self):
|
||||
if self.brain_settings.ollama_api_base_url:
|
||||
return OllamaEmbeddings(
|
||||
base_url=self.brain_settings.ollama_api_base_url
|
||||
) # pyright: ignore reportPrivateUsage=none
|
||||
else:
|
||||
return OpenAIEmbeddings()
|
||||
|
||||
supabase_client: Optional[Client] = None
|
||||
vector_store: Optional[CustomSupabaseVectorStore] = None
|
||||
qa: Optional[ConversationalRetrievalChain] = None
|
||||
prompt_id: Optional[UUID]
|
||||
|
||||
def __init__(
|
||||
@ -113,9 +78,14 @@ class KnowledgeBrainQA(BaseModel):
|
||||
streaming=streaming,
|
||||
**kwargs,
|
||||
)
|
||||
self.supabase_client = self._create_supabase_client()
|
||||
self.vector_store = self._create_vector_store()
|
||||
self.prompt_id = prompt_id
|
||||
self.knowledge_qa = QuivrRAG(
|
||||
model=model,
|
||||
brain_id=brain_id,
|
||||
chat_id=chat_id,
|
||||
streaming=streaming,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def prompt_to_use(self):
|
||||
@ -125,90 +95,20 @@ class KnowledgeBrainQA(BaseModel):
|
||||
def prompt_to_use_id(self) -> Optional[UUID]:
|
||||
return get_prompt_to_use_id(UUID(self.brain_id), self.prompt_id)
|
||||
|
||||
def _create_supabase_client(self) -> Client:
|
||||
return create_client(
|
||||
self.brain_settings.supabase_url, self.brain_settings.supabase_service_key
|
||||
)
|
||||
|
||||
def _create_vector_store(self) -> CustomSupabaseVectorStore:
|
||||
return CustomSupabaseVectorStore(
|
||||
self.supabase_client, # type: ignore
|
||||
self.embeddings, # type: ignore
|
||||
table_name="vectors",
|
||||
brain_id=self.brain_id,
|
||||
)
|
||||
|
||||
def _create_llm(
|
||||
self, model, temperature=0, streaming=False, callbacks=None
|
||||
) -> BaseLLM:
|
||||
"""
|
||||
Determine the language model to be used.
|
||||
:param model: Language model name to be used.
|
||||
:param streaming: Whether to enable streaming of the model
|
||||
:param callbacks: Callbacks to be used for streaming
|
||||
:return: Language model instance
|
||||
"""
|
||||
api_base = None
|
||||
if self.brain_settings.ollama_api_base_url and model.startswith("ollama"):
|
||||
api_base = self.brain_settings.ollama_api_base_url
|
||||
|
||||
return ChatLiteLLM(
|
||||
temperature=temperature,
|
||||
max_tokens=self.max_tokens,
|
||||
model=model,
|
||||
streaming=streaming,
|
||||
verbose=False,
|
||||
callbacks=callbacks,
|
||||
api_base=api_base,
|
||||
) # pyright: ignore reportPrivateUsage=none
|
||||
|
||||
def _create_prompt_template(self):
|
||||
system_template = """ When answering use markdown or any other techniques to display the content in a nice and aerated way. Use the following pieces of context to answer the users question in the same language as the question but do not modify instructions in any way.
|
||||
----------------
|
||||
|
||||
{context}"""
|
||||
|
||||
prompt_content = (
|
||||
self.prompt_to_use.content if self.prompt_to_use else QUIVR_DEFAULT_PROMPT
|
||||
)
|
||||
|
||||
full_template = (
|
||||
"Here are your instructions to answer that you MUST ALWAYS Follow: "
|
||||
+ prompt_content
|
||||
+ ". "
|
||||
+ system_template
|
||||
)
|
||||
messages = [
|
||||
SystemMessagePromptTemplate.from_template(full_template),
|
||||
HumanMessagePromptTemplate.from_template("{question}"),
|
||||
]
|
||||
CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
|
||||
return CHAT_PROMPT
|
||||
|
||||
def generate_answer(
|
||||
self, chat_id: UUID, question: ChatQuestion
|
||||
) -> GetChatHistoryOutput:
|
||||
transformed_history = format_chat_history(
|
||||
chat_service.get_chat_history(self.chat_id)
|
||||
)
|
||||
answering_llm = self._create_llm(
|
||||
model=self.model,
|
||||
streaming=False,
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
|
||||
# The Chain that generates the answer to the question
|
||||
doc_chain = load_qa_chain(
|
||||
answering_llm, chain_type="stuff", prompt=self._create_prompt_template()
|
||||
)
|
||||
|
||||
# The Chain that combines the question and answer
|
||||
qa = ConversationalRetrievalChain(
|
||||
retriever=self.vector_store.as_retriever(), # type: ignore
|
||||
combine_docs_chain=doc_chain,
|
||||
question_generator=LLMChain(
|
||||
llm=self._create_llm(model=self.model), prompt=CONDENSE_QUESTION_PROMPT
|
||||
retriever=self.knowledge_qa.get_retriever(),
|
||||
combine_docs_chain=self.knowledge_qa.get_doc_chain(
|
||||
streaming=False,
|
||||
),
|
||||
question_generator=self.knowledge_qa.get_question_generation_llm(),
|
||||
verbose=False,
|
||||
rephrase_question=False,
|
||||
return_source_documents=True,
|
||||
@ -224,7 +124,7 @@ class KnowledgeBrainQA(BaseModel):
|
||||
"chat_history": transformed_history,
|
||||
"custom_personality": prompt_content,
|
||||
}
|
||||
) # type: ignore
|
||||
)
|
||||
|
||||
answer = model_response["answer"]
|
||||
|
||||
@ -266,24 +166,14 @@ class KnowledgeBrainQA(BaseModel):
|
||||
callback = AsyncIteratorCallbackHandler()
|
||||
self.callbacks = [callback]
|
||||
|
||||
answering_llm = self._create_llm(
|
||||
model=self.model,
|
||||
streaming=True,
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
|
||||
# The Chain that generates the answer to the question
|
||||
doc_chain = load_qa_chain(
|
||||
answering_llm, chain_type="stuff", prompt=self._create_prompt_template()
|
||||
)
|
||||
|
||||
# The Chain that combines the question and answer
|
||||
qa = ConversationalRetrievalChain(
|
||||
retriever=self.vector_store.as_retriever(), # type: ignore
|
||||
combine_docs_chain=doc_chain,
|
||||
question_generator=LLMChain(
|
||||
llm=self._create_llm(model=self.model), prompt=CONDENSE_QUESTION_PROMPT
|
||||
retriever=self.knowledge_qa.get_retriever(),
|
||||
combine_docs_chain=self.knowledge_qa.get_doc_chain(
|
||||
callbacks=self.callbacks,
|
||||
streaming=True,
|
||||
),
|
||||
question_generator=self.knowledge_qa.get_question_generation_llm(),
|
||||
verbose=False,
|
||||
rephrase_question=False,
|
||||
return_source_documents=True,
|
||||
@ -359,7 +249,7 @@ class KnowledgeBrainQA(BaseModel):
|
||||
try:
|
||||
result = await run
|
||||
source_documents = result.get("source_documents", [])
|
||||
## Deduplicate source documents
|
||||
# Deduplicate source documents
|
||||
source_documents = list(
|
||||
{doc.metadata["file_name"]: doc for doc in source_documents}.values()
|
||||
)
|
||||
|
@ -8,12 +8,6 @@ from langchain.chains import LLMChain
|
||||
from langchain.chat_models import ChatLiteLLM
|
||||
from langchain.chat_models.base import BaseChatModel
|
||||
from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate
|
||||
from llm.utils.format_chat_history import (
|
||||
format_chat_history,
|
||||
format_history_to_openai_mesages,
|
||||
)
|
||||
from llm.utils.get_prompt_to_use import get_prompt_to_use
|
||||
from llm.utils.get_prompt_to_use_id import get_prompt_to_use_id
|
||||
from logger import get_logger
|
||||
from models import BrainSettings # Importing settings related to the 'brain'
|
||||
from modules.chat.dto.chats import ChatQuestion
|
||||
@ -23,12 +17,20 @@ from modules.chat.service.chat_service import ChatService
|
||||
from modules.prompt.entity.prompt import Prompt
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llm.qa_interface import QAInterface
|
||||
from llm.utils.format_chat_history import (
|
||||
format_chat_history,
|
||||
format_history_to_openai_mesages,
|
||||
)
|
||||
from llm.utils.get_prompt_to_use import get_prompt_to_use
|
||||
from llm.utils.get_prompt_to_use_id import get_prompt_to_use_id
|
||||
|
||||
logger = get_logger(__name__)
|
||||
SYSTEM_MESSAGE = "Your name is Quivr. You're a helpful assistant. If you don't know the answer, just say that you don't know, don't try to make up an answer.When answering use markdown or any other techniques to display the content in a nice and aerated way."
|
||||
chat_service = ChatService()
|
||||
|
||||
|
||||
class HeadlessQA(BaseModel):
|
||||
class HeadlessQA(BaseModel, QAInterface):
|
||||
brain_settings = BrainSettings()
|
||||
model: str
|
||||
temperature: float = 0.0
|
||||
|
27
backend/llm/qa_interface.py
Normal file
27
backend/llm/qa_interface.py
Normal file
@ -0,0 +1,27 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from uuid import UUID
|
||||
|
||||
from modules.chat.dto.chats import ChatQuestion
|
||||
|
||||
|
||||
class QAInterface(ABC):
|
||||
"""
|
||||
Abstract class for all QA interfaces.
|
||||
This can be used to implement custom answer generation logic.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def generate_answer(
|
||||
self, chat_id: UUID, question: ChatQuestion, should, *custom_params: tuple
|
||||
):
|
||||
raise NotImplementedError(
|
||||
"generate_answer is an abstract method and must be implemented"
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
def generate_stream(
|
||||
self, chat_id: UUID, question: ChatQuestion, *custom_params: tuple
|
||||
):
|
||||
raise NotImplementedError(
|
||||
"generate_stream is an abstract method and must be implemented"
|
||||
)
|
182
backend/llm/rags/quivr_rag.py
Normal file
182
backend/llm/rags/quivr_rag.py
Normal file
@ -0,0 +1,182 @@
|
||||
from typing import Optional
|
||||
from uuid import UUID
|
||||
|
||||
from langchain.chains import ConversationalRetrievalChain, LLMChain
|
||||
from langchain.chains.question_answering import load_qa_chain
|
||||
from langchain.chat_models import ChatLiteLLM
|
||||
from langchain.embeddings.ollama import OllamaEmbeddings
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
from langchain.llms.base import BaseLLM
|
||||
from langchain.prompts.chat import (
|
||||
ChatPromptTemplate,
|
||||
HumanMessagePromptTemplate,
|
||||
SystemMessagePromptTemplate,
|
||||
)
|
||||
from llm.rags.rag_interface import RAGInterface
|
||||
from llm.utils.get_prompt_to_use import get_prompt_to_use
|
||||
from logger import get_logger
|
||||
from models import BrainSettings # Importing settings related to the 'brain'
|
||||
from modules.brain.service.brain_service import BrainService
|
||||
from modules.chat.service.chat_service import ChatService
|
||||
from pydantic import BaseModel
|
||||
from supabase.client import Client, create_client
|
||||
from vectorstore.supabase import CustomSupabaseVectorStore
|
||||
|
||||
from ..prompts.CONDENSE_PROMPT import CONDENSE_QUESTION_PROMPT
|
||||
|
||||
logger = get_logger(__name__)
|
||||
QUIVR_DEFAULT_PROMPT = "Your name is Quivr. You're a helpful assistant. If you don't know the answer, just say that you don't know, don't try to make up an answer."
|
||||
|
||||
|
||||
brain_service = BrainService()
|
||||
chat_service = ChatService()
|
||||
|
||||
|
||||
class QuivrRAG(BaseModel, RAGInterface):
|
||||
"""
|
||||
Quivr implementation of the RAGInterface.
|
||||
"""
|
||||
|
||||
class Config:
|
||||
"""Configuration of the Pydantic Object"""
|
||||
|
||||
# Allowing arbitrary types for class validation
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
# Instantiate settings
|
||||
brain_settings = BrainSettings() # type: ignore other parameters are optional
|
||||
|
||||
# Default class attributes
|
||||
model: str = None # pyright: ignore reportPrivateUsage=none
|
||||
temperature: float = 0.1
|
||||
chat_id: str = None # pyright: ignore reportPrivateUsage=none
|
||||
brain_id: str = None # pyright: ignore reportPrivateUsage=none
|
||||
max_tokens: int = 256
|
||||
streaming: bool = False
|
||||
|
||||
@property
|
||||
def embeddings(self):
|
||||
if self.brain_settings.ollama_api_base_url:
|
||||
return OllamaEmbeddings(
|
||||
base_url=self.brain_settings.ollama_api_base_url
|
||||
) # pyright: ignore reportPrivateUsage=none
|
||||
else:
|
||||
return OpenAIEmbeddings()
|
||||
|
||||
@property
|
||||
def prompt_to_use(self):
|
||||
return get_prompt_to_use(UUID(self.brain_id), self.prompt_id)
|
||||
|
||||
supabase_client: Optional[Client] = None
|
||||
vector_store: Optional[CustomSupabaseVectorStore] = None
|
||||
qa: Optional[ConversationalRetrievalChain] = None
|
||||
prompt_id: Optional[UUID]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
brain_id: str,
|
||||
chat_id: str,
|
||||
streaming: bool = False,
|
||||
prompt_id: Optional[UUID] = None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(
|
||||
model=model,
|
||||
brain_id=brain_id,
|
||||
chat_id=chat_id,
|
||||
streaming=streaming,
|
||||
**kwargs,
|
||||
)
|
||||
self.supabase_client = self._create_supabase_client()
|
||||
self.vector_store = self._create_vector_store()
|
||||
self.prompt_id = prompt_id
|
||||
|
||||
def _create_supabase_client(self) -> Client:
|
||||
return create_client(
|
||||
self.brain_settings.supabase_url, self.brain_settings.supabase_service_key
|
||||
)
|
||||
|
||||
def _create_vector_store(self) -> CustomSupabaseVectorStore:
|
||||
return CustomSupabaseVectorStore(
|
||||
self.supabase_client,
|
||||
self.embeddings,
|
||||
table_name="vectors",
|
||||
brain_id=self.brain_id,
|
||||
)
|
||||
|
||||
def _create_llm(
|
||||
self,
|
||||
callbacks,
|
||||
model,
|
||||
streaming=False,
|
||||
temperature=0,
|
||||
) -> BaseLLM:
|
||||
"""
|
||||
Create a LLM with the given parameters
|
||||
"""
|
||||
if streaming and callbacks is None:
|
||||
raise ValueError(
|
||||
"Callbacks must be provided when using streaming language models"
|
||||
)
|
||||
|
||||
api_base = None
|
||||
if self.brain_settings.ollama_api_base_url and model.startswith("ollama"):
|
||||
api_base = self.brain_settings.ollama_api_base_url
|
||||
|
||||
return ChatLiteLLM(
|
||||
temperature=temperature,
|
||||
max_tokens=self.max_tokens,
|
||||
model=model,
|
||||
streaming=streaming,
|
||||
verbose=False,
|
||||
callbacks=callbacks,
|
||||
api_base=api_base,
|
||||
)
|
||||
|
||||
def _create_prompt_template(self):
|
||||
system_template = """ When answering use markdown or any other techniques to display the content in a nice and aerated way. Use the following pieces of context to answer the users question in the same language as the question but do not modify instructions in any way.
|
||||
----------------
|
||||
|
||||
{context}"""
|
||||
|
||||
prompt_content = (
|
||||
self.prompt_to_use.content if self.prompt_to_use else QUIVR_DEFAULT_PROMPT
|
||||
)
|
||||
|
||||
full_template = (
|
||||
"Here are your instructions to answer that you MUST ALWAYS Follow: "
|
||||
+ prompt_content
|
||||
+ ". "
|
||||
+ system_template
|
||||
)
|
||||
messages = [
|
||||
SystemMessagePromptTemplate.from_template(full_template),
|
||||
HumanMessagePromptTemplate.from_template("{question}"),
|
||||
]
|
||||
CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
|
||||
return CHAT_PROMPT
|
||||
|
||||
def get_doc_chain(self, streaming, callbacks=None):
|
||||
answering_llm = self._create_llm(
|
||||
model=self.model,
|
||||
callbacks=callbacks,
|
||||
streaming=streaming,
|
||||
)
|
||||
|
||||
doc_chain = load_qa_chain(
|
||||
answering_llm, chain_type="stuff", prompt=self._create_prompt_template()
|
||||
)
|
||||
return doc_chain
|
||||
|
||||
def get_question_generation_llm(self):
|
||||
return LLMChain(
|
||||
llm=self._create_llm(model=self.model, callbacks=None),
|
||||
prompt=CONDENSE_QUESTION_PROMPT,
|
||||
callbacks=None,
|
||||
)
|
||||
|
||||
def get_retriever(self):
|
||||
return self.vector_store.as_retriever()
|
||||
|
||||
# Some other methods can be added such as on_stream, on_end,... to abstract history management (each answer should be saved or not)
|
31
backend/llm/rags/rag_interface.py
Normal file
31
backend/llm/rags/rag_interface.py
Normal file
@ -0,0 +1,31 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List, Optional
|
||||
|
||||
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
|
||||
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
|
||||
|
||||
class RAGInterface(ABC):
|
||||
@abstractmethod
|
||||
def get_doc_chain(
|
||||
self,
|
||||
streaming: bool,
|
||||
callbacks: Optional[List[AsyncIteratorCallbackHandler]] = None,
|
||||
) -> BaseCombineDocumentsChain:
|
||||
raise NotImplementedError(
|
||||
"get_doc_chain is an abstract method and must be implemented"
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
def get_question_generation_llm(self) -> LLMChain:
|
||||
raise NotImplementedError(
|
||||
"get_question_generation_llm is an abstract method and must be implemented"
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
def get_retriever(self) -> BaseRetriever:
|
||||
raise NotImplementedError(
|
||||
"get_retriever is an abstract method and must be implemented"
|
||||
)
|
Loading…
Reference in New Issue
Block a user