mirror of
https://github.com/QuivrHQ/quivr.git
synced 2024-12-15 01:21:48 +03:00
chore(refacto): removed unused
This commit is contained in:
parent
99258790ad
commit
533446a2b4
@ -4,6 +4,7 @@ from uuid import UUID
|
||||
|
||||
from auth.auth_bearer import AuthBearer, get_current_user
|
||||
from fastapi import APIRouter, Depends, Request
|
||||
from llm.brainpicking import BrainPicking
|
||||
from models.chats import ChatMessage
|
||||
from models.settings import CommonsDep, common_dependencies
|
||||
from models.users import User
|
||||
@ -11,8 +12,6 @@ from utils.chats import (create_chat, get_chat_name_from_first_question,
|
||||
update_chat)
|
||||
from utils.users import (create_user, fetch_user_id_from_credentials,
|
||||
update_user_request_count)
|
||||
from utils.vectors import get_answer
|
||||
from llm.brainpicking import BrainPicking
|
||||
|
||||
chat_router = APIRouter()
|
||||
|
||||
|
@ -50,42 +50,3 @@ def create_summary(commons: CommonsDep, document_id, content, metadata):
|
||||
if sids and len(sids) > 0:
|
||||
commons['supabase'].table("summaries").update(
|
||||
{"document_id": document_id}).match({"id": sids[0]}).execute()
|
||||
|
||||
|
||||
def get_answer(commons: CommonsDep, chat_message: ChatMessage, email: str, user_openai_api_key: str):
|
||||
Brain = BrainPicking().init(chat_message.model, email)
|
||||
qa = Brain.get_qa(chat_message, user_openai_api_key)
|
||||
|
||||
|
||||
# if chat_message.use_summarization:
|
||||
# summaries = neurons.similarity_search(chat_message.question, table='match_summaries')
|
||||
# evaluations = llm_evaluate_summaries(
|
||||
# chat_message.question, summaries, chat_message.model)
|
||||
# if evaluations:
|
||||
# response = commons['supabase'].from_('vectors').select(
|
||||
# '*').in_('id', values=[e['document_id'] for e in evaluations]).execute()
|
||||
# additional_context = '---\nAdditional Context={}'.format(
|
||||
# '---\n'.join(data['content'] for data in response.data)
|
||||
# ) + '\n'
|
||||
# model_response = qa(
|
||||
# {"question": additional_context + chat_message.question})
|
||||
# else:
|
||||
# transformed_history = []
|
||||
|
||||
# for i in range(0, len(chat_message.history) - 1, 2):
|
||||
# user_message = chat_message.history[i][1]
|
||||
# assistant_message = chat_message.history[i + 1][1]
|
||||
# transformed_history.append((user_message, assistant_message))
|
||||
# model_response = qa({"question": chat_message.question, "chat_history": transformed_history})
|
||||
|
||||
# answer = model_response['answer']
|
||||
|
||||
# if "source_documents" in answer:
|
||||
# sources = [
|
||||
# doc.metadata["file_name"] for doc in answer["source_documents"]
|
||||
# if "file_name" in doc.metadata]
|
||||
# if sources:
|
||||
# files = dict.fromkeys(sources)
|
||||
# answer = answer + "\n\nRef: " + "; ".join(files)
|
||||
|
||||
return answer
|
Loading…
Reference in New Issue
Block a user