Support for Anthropics Models

This update enhances the "Second Brain" application by adding support for Anthropics AI models. Users can now use not only OpenAI's GPT-3/4, but also Anthropics' Claude models to store and query their knowledge.

Key changes include:

Added an anthropic_api_key field in the secrets configuration file.
Introduced a selection for different AI models including GPT-3, GPT-4, and various versions of Claude.
Updated question handling to be model-agnostic, and added support for Anthropics' Claude models in the question processing workflow.
Modified the streamlit interface to allow users to input their choice of model, control the "temperature" of the model's responses, and set the max tokens limit.
Upgraded requirements.txt file with the latest version of the Anthropics library.
This update empowers users to leverage different AI models based on their needs, providing a more flexible and robust tool for knowledge management.
This commit is contained in:
shaun 2023-05-14 01:22:49 -07:00
parent adbb41eb40
commit 92ac5e8dfc
6 changed files with 231 additions and 26 deletions

View File

@ -1,3 +1,4 @@
supabase_url = "https://lalalala.supabase.co" supabase_url = "https://lalalala.supabase.co"
supabase_service_key = "lalalala" supabase_service_key = "lalalala"
openai_api_key = "sk-lalalala" openai_api_key = "sk-lalalala"
anthropic_api_key = ""

6
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,6 @@
{
"[python]": {
"editor.defaultFormatter": "ms-python.autopep8"
},
"python.formatting.provider": "none"
}

163
diff.txt Normal file
View File

@ -0,0 +1,163 @@
diff --git a/.streamlit/secrets.toml.example b/.streamlit/secrets.toml.example
index 093c5bf..4c405dc 100644
--- a/.streamlit/secrets.toml.example
+++ b/.streamlit/secrets.toml.example
@@ -1,3 +1,4 @@
supabase_url = "https://lalalala.supabase.co"
supabase_service_key = "lalalala"
-openai_api_key = "sk-lalalala"
\ No newline at end of file
+openai_api_key = "sk-lalalala"
+anthropic_api_key = ""
diff --git a/main.py b/main.py
index 6ed2560..88af1c5 100644
--- a/main.py
+++ b/main.py
@@ -10,25 +10,30 @@ from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import SupabaseVectorStore
from supabase import Client, create_client
-# supabase_url = "https://fqgpcifsfmamprzldyiv.supabase.co"
supabase_url = st.secrets.supabase_url
supabase_key = st.secrets.supabase_service_key
openai_api_key = st.secrets.openai_api_key
+anthropic_api_key = st.secrets.anthropic_api_key
supabase: Client = create_client(supabase_url, supabase_key)
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
-vector_store = SupabaseVectorStore(supabase, embeddings, table_name="documents")
+vector_store = SupabaseVectorStore(
+ supabase, embeddings, table_name="documents")
+models = ["gpt-3.5-turbo", "gpt-4"]
+if anthropic_api_key:
+ models += ["claude-v1", "claude-v1.3",
+ "claude-instant-v1-100k", "claude-instant-v1.1-100k"]
# Set the theme
st.set_page_config(
page_title="Second Brain",
layout="wide",
initial_sidebar_state="expanded",
-
)
st.title("🧠 Second Brain 🧠")
-st.markdown("Store your knowledge in a vector store and query it with OpenAI's GPT-3/4.")
+st.markdown(
+ "Store your knowledge in a vector store and query it with OpenAI's GPT-3/4.")
st.markdown("---\n\n")
# Initialize session state variables
@@ -40,31 +45,40 @@ if 'chunk_size' not in st.session_state:
st.session_state['chunk_size'] = 500
if 'chunk_overlap' not in st.session_state:
st.session_state['chunk_overlap'] = 0
+if 'max_tokens' not in st.session_state:
+ st.session_state['max_tokens'] = 256
# Create a radio button for user to choose between adding knowledge or asking a question
-user_choice = st.radio("Choose an action", ('Add Knowledge', 'Chat with your Brain','Forget' ))
+user_choice = st.radio(
+ "Choose an action", ('Add Knowledge', 'Chat with your Brain', 'Forget'))
st.markdown("---\n\n")
-
-
if user_choice == 'Add Knowledge':
# Display chunk size and overlap selection only when adding knowledge
- st.sidebar.title("Configuration")
- st.sidebar.markdown("Choose your chunk size and overlap for adding knowledge.")
- st.session_state['chunk_size'] = st.sidebar.slider("Select Chunk Size", 100, 1000, st.session_state['chunk_size'], 50)
- st.session_state['chunk_overlap'] = st.sidebar.slider("Select Chunk Overlap", 0, 100, st.session_state['chunk_overlap'], 10)
+ st.sidebar.title("Configuration")
+ st.sidebar.markdown(
+ "Choose your chunk size and overlap for adding knowledge.")
+ st.session_state['chunk_size'] = st.sidebar.slider(
+ "Select Chunk Size", 100, 1000, st.session_state['chunk_size'], 50)
+ st.session_state['chunk_overlap'] = st.sidebar.slider(
+ "Select Chunk Overlap", 0, 100, st.session_state['chunk_overlap'], 10)
file_uploader(supabase, openai_api_key, vector_store)
elif user_choice == 'Chat with your Brain':
# Display model and temperature selection only when asking questions
- st.sidebar.title("Configuration")
- st.sidebar.markdown("Choose your model and temperature for asking questions.")
- st.session_state['model'] = st.sidebar.selectbox("Select Model", ["gpt-3.5-turbo", "gpt-4"], index=("gpt-3.5-turbo", "gpt-4").index(st.session_state['model']))
- st.session_state['temperature'] = st.sidebar.slider("Select Temperature", 0.0, 1.0, st.session_state['temperature'], 0.1)
- chat_with_doc(openai_api_key, vector_store)
+ st.sidebar.title("Configuration")
+ st.sidebar.markdown(
+ "Choose your model and temperature for asking questions.")
+ st.session_state['model'] = st.sidebar.selectbox(
+ "Select Model", models, index=(models).index(st.session_state['model']))
+ st.session_state['temperature'] = st.sidebar.slider(
+ "Select Temperature", 0.0, 1.0, st.session_state['temperature'], 0.1)
+ st.session_state['max_tokens'] = st.sidebar.slider(
+ "Select Max Tokens", 256, 2048, st.session_state['max_tokens'], 2048)
+ chat_with_doc(st.session_state['model'], vector_store)
elif user_choice == 'Forget':
st.sidebar.title("Configuration")
-
+
brain(supabase)
-st.markdown("---\n\n")
\ No newline at end of file
+st.markdown("---\n\n")
diff --git a/question.py b/question.py
index 8e875f6..6f8e9d3 100644
--- a/question.py
+++ b/question.py
@@ -1,14 +1,35 @@
import streamlit as st
+from streamlit.logger import get_logger
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI
+from langchain.chat_models import ChatAnthropic
+from langchain.vectorstores import SupabaseVectorStore
-memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
+memory = ConversationBufferMemory(
+ memory_key="chat_history", return_messages=True)
+openai_api_key = st.secrets.openai_api_key
+anthropic_api_key = st.secrets.anthropic_api_key
+logger = get_logger(__name__)
-def chat_with_doc(openai_api_key, vector_store):
- question = st.text_input("## Ask a question")
+
+def chat_with_doc(model, vector_store: SupabaseVectorStore):
+ question = st.text_area("## Ask a question")
button = st.button("Ask")
if button:
- qa = ConversationalRetrievalChain.from_llm(OpenAI(model_name=st.session_state['model'], openai_api_key=openai_api_key, temperature=st.session_state['temperature']), vector_store.as_retriever(), memory=memory)
- result = qa({"question": question})
- st.write(result["answer"])
\ No newline at end of file
+ if model.startswith("gpt"):
+ logger.info('Using OpenAI model %s', model)
+ qa = ConversationalRetrievalChain.from_llm(
+ OpenAI(
+ model_name=st.session_state['model'], openai_api_key=openai_api_key, temperature=st.session_state['temperature'], max_tokens=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True)
+ result = qa({"question": question})
+ logger.info('Result: %s', result)
+ st.write(result["answer"])
+ elif anthropic_api_key and model.startswith("claude"):
+ logger.info('Using Anthropics model %s', model)
+ qa = ConversationalRetrievalChain.from_llm(
+ ChatAnthropic(
+ model=st.session_state['model'], anthropic_api_key=anthropic_api_key, temperature=st.session_state['temperature'], max_tokens_to_sample=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True, max_tokens_limit=102400)
+ result = qa({"question": question})
+ logger.info('Result: %s', result)
+ st.write(result["answer"])
diff --git a/requirements.txt b/requirements.txt
index 981d00b..ea8f1f6 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -8,4 +8,4 @@ StrEnum==0.4.10
supabase==1.0.3
tiktoken==0.4.0
unstructured==0.6.5
-
+anthropic=0.2.8

42
main.py
View File

@ -10,25 +10,30 @@ from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import SupabaseVectorStore from langchain.vectorstores import SupabaseVectorStore
from supabase import Client, create_client from supabase import Client, create_client
# supabase_url = "https://fqgpcifsfmamprzldyiv.supabase.co"
supabase_url = st.secrets.supabase_url supabase_url = st.secrets.supabase_url
supabase_key = st.secrets.supabase_service_key supabase_key = st.secrets.supabase_service_key
openai_api_key = st.secrets.openai_api_key openai_api_key = st.secrets.openai_api_key
anthropic_api_key = st.secrets.anthropic_api_key
supabase: Client = create_client(supabase_url, supabase_key) supabase: Client = create_client(supabase_url, supabase_key)
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
vector_store = SupabaseVectorStore(supabase, embeddings, table_name="documents") vector_store = SupabaseVectorStore(
supabase, embeddings, table_name="documents")
models = ["gpt-3.5-turbo", "gpt-4"]
if anthropic_api_key:
models += ["claude-v1", "claude-v1.3",
"claude-instant-v1-100k", "claude-instant-v1.1-100k"]
# Set the theme # Set the theme
st.set_page_config( st.set_page_config(
page_title="Second Brain", page_title="Second Brain",
layout="wide", layout="wide",
initial_sidebar_state="expanded", initial_sidebar_state="expanded",
) )
st.title("🧠 Second Brain 🧠") st.title("🧠 Second Brain 🧠")
st.markdown("Store your knowledge in a vector store and query it with OpenAI's GPT-3/4.") st.markdown(
"Store your knowledge in a vector store and query it with OpenAI's GPT-3/4.")
st.markdown("---\n\n") st.markdown("---\n\n")
# Initialize session state variables # Initialize session state variables
@ -40,28 +45,37 @@ if 'chunk_size' not in st.session_state:
st.session_state['chunk_size'] = 500 st.session_state['chunk_size'] = 500
if 'chunk_overlap' not in st.session_state: if 'chunk_overlap' not in st.session_state:
st.session_state['chunk_overlap'] = 0 st.session_state['chunk_overlap'] = 0
if 'max_tokens' not in st.session_state:
st.session_state['max_tokens'] = 256
# Create a radio button for user to choose between adding knowledge or asking a question # Create a radio button for user to choose between adding knowledge or asking a question
user_choice = st.radio("Choose an action", ('Add Knowledge', 'Chat with your Brain','Forget' )) user_choice = st.radio(
"Choose an action", ('Add Knowledge', 'Chat with your Brain', 'Forget'))
st.markdown("---\n\n") st.markdown("---\n\n")
if user_choice == 'Add Knowledge': if user_choice == 'Add Knowledge':
# Display chunk size and overlap selection only when adding knowledge # Display chunk size and overlap selection only when adding knowledge
st.sidebar.title("Configuration") st.sidebar.title("Configuration")
st.sidebar.markdown("Choose your chunk size and overlap for adding knowledge.") st.sidebar.markdown(
st.session_state['chunk_size'] = st.sidebar.slider("Select Chunk Size", 100, 1000, st.session_state['chunk_size'], 50) "Choose your chunk size and overlap for adding knowledge.")
st.session_state['chunk_overlap'] = st.sidebar.slider("Select Chunk Overlap", 0, 100, st.session_state['chunk_overlap'], 10) st.session_state['chunk_size'] = st.sidebar.slider(
"Select Chunk Size", 100, 1000, st.session_state['chunk_size'], 50)
st.session_state['chunk_overlap'] = st.sidebar.slider(
"Select Chunk Overlap", 0, 100, st.session_state['chunk_overlap'], 10)
file_uploader(supabase, openai_api_key, vector_store) file_uploader(supabase, openai_api_key, vector_store)
elif user_choice == 'Chat with your Brain': elif user_choice == 'Chat with your Brain':
# Display model and temperature selection only when asking questions # Display model and temperature selection only when asking questions
st.sidebar.title("Configuration") st.sidebar.title("Configuration")
st.sidebar.markdown("Choose your model and temperature for asking questions.") st.sidebar.markdown(
st.session_state['model'] = st.sidebar.selectbox("Select Model", ["gpt-3.5-turbo", "gpt-4"], index=("gpt-3.5-turbo", "gpt-4").index(st.session_state['model'])) "Choose your model and temperature for asking questions.")
st.session_state['temperature'] = st.sidebar.slider("Select Temperature", 0.0, 1.0, st.session_state['temperature'], 0.1) st.session_state['model'] = st.sidebar.selectbox(
chat_with_doc(openai_api_key, vector_store) "Select Model", models, index=(models).index(st.session_state['model']))
st.session_state['temperature'] = st.sidebar.slider(
"Select Temperature", 0.0, 1.0, st.session_state['temperature'], 0.1)
st.session_state['max_tokens'] = st.sidebar.slider(
"Select Max Tokens", 256, 2048, st.session_state['max_tokens'], 2048)
chat_with_doc(st.session_state['model'], vector_store)
elif user_choice == 'Forget': elif user_choice == 'Forget':
st.sidebar.title("Configuration") st.sidebar.title("Configuration")

View File

@ -1,14 +1,35 @@
import streamlit as st import streamlit as st
from streamlit.logger import get_logger
from langchain.chains import ConversationalRetrievalChain from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI from langchain.llms import OpenAI
from langchain.chat_models import ChatAnthropic
from langchain.vectorstores import SupabaseVectorStore
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) memory = ConversationBufferMemory(
memory_key="chat_history", return_messages=True)
openai_api_key = st.secrets.openai_api_key
anthropic_api_key = st.secrets.anthropic_api_key
logger = get_logger(__name__)
def chat_with_doc(openai_api_key, vector_store):
question = st.text_input("## Ask a question") def chat_with_doc(model, vector_store: SupabaseVectorStore):
question = st.text_area("## Ask a question")
button = st.button("Ask") button = st.button("Ask")
if button: if button:
qa = ConversationalRetrievalChain.from_llm(OpenAI(model_name=st.session_state['model'], openai_api_key=openai_api_key, temperature=st.session_state['temperature']), vector_store.as_retriever(), memory=memory) if model.startswith("gpt"):
logger.info('Using OpenAI model %s', model)
qa = ConversationalRetrievalChain.from_llm(
OpenAI(
model_name=st.session_state['model'], openai_api_key=openai_api_key, temperature=st.session_state['temperature'], max_tokens=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True)
result = qa({"question": question}) result = qa({"question": question})
logger.info('Result: %s', result)
st.write(result["answer"])
elif anthropic_api_key and model.startswith("claude"):
logger.info('Using Anthropics model %s', model)
qa = ConversationalRetrievalChain.from_llm(
ChatAnthropic(
model=st.session_state['model'], anthropic_api_key=anthropic_api_key, temperature=st.session_state['temperature'], max_tokens_to_sample=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True, max_tokens_limit=102400)
result = qa({"question": question})
logger.info('Result: %s', result)
st.write(result["answer"]) st.write(result["answer"])

View File

@ -8,4 +8,4 @@ StrEnum==0.4.10
supabase==1.0.3 supabase==1.0.3
tiktoken==0.4.0 tiktoken==0.4.0
unstructured==0.6.5 unstructured==0.6.5
anthropic==0.2.8