mirror of
https://github.com/QuivrHQ/quivr.git
synced 2024-12-14 17:03:29 +03:00
feat(files.py): curlwebpage and add it to db
This commit is contained in:
parent
5e5d11619b
commit
971aa083a5
90
files.py
90
files.py
@ -1,14 +1,19 @@
|
||||
import streamlit as st
|
||||
from streamlit.runtime.uploaded_file_manager import UploadedFile, UploadedFileRec
|
||||
import os
|
||||
from loaders.audio import process_audio
|
||||
from loaders.txt import process_txt
|
||||
from loaders.csv import process_csv
|
||||
from loaders.markdown import process_markdown
|
||||
from loaders.html import process_html
|
||||
from utils import compute_sha1_from_content
|
||||
from loaders.pdf import process_pdf
|
||||
import requests
|
||||
import re
|
||||
import unicodedata
|
||||
import tempfile
|
||||
|
||||
def file_uploader(supabase, openai_key, vector_store):
|
||||
file_processors = {
|
||||
file_processors = {
|
||||
".txt": process_txt,
|
||||
".csv": process_csv,
|
||||
".md": process_markdown,
|
||||
@ -21,25 +26,82 @@ def file_uploader(supabase, openai_key, vector_store):
|
||||
".wav": process_audio,
|
||||
".mpeg": process_audio,
|
||||
".pdf": process_pdf,
|
||||
}
|
||||
".html": process_html,
|
||||
}
|
||||
|
||||
def file_uploader(supabase, openai_key, vector_store):
|
||||
files = st.file_uploader("Upload a file", accept_multiple_files=True, type=list(file_processors.keys()))
|
||||
if st.button("Add to Database"):
|
||||
if files is not None:
|
||||
for file in files:
|
||||
if file_already_exists(supabase, file):
|
||||
st.write(f"😎 {file.name} is already in the database.")
|
||||
elif file.size < 1:
|
||||
st.write(f"💨 {file.name} is empty.")
|
||||
else:
|
||||
file_extension = os.path.splitext(file.name)[-1]
|
||||
if file_extension in file_processors:
|
||||
file_processors[file_extension](vector_store, file)
|
||||
st.write(f"✅ {file.name} ")
|
||||
else:
|
||||
st.write(f"❌ {file.name} is not a valid file type.")
|
||||
filter_file(file, supabase, vector_store)
|
||||
|
||||
def file_already_exists(supabase, file):
|
||||
file_sha1 = compute_sha1_from_content(file.getvalue())
|
||||
response = supabase.table("documents").select("id").eq("metadata->>file_sha1", file_sha1).execute()
|
||||
return len(response.data) > 0
|
||||
|
||||
def filter_file(file, supabase, vector_store):
|
||||
if file_already_exists(supabase, file):
|
||||
st.write(f"😎 {file.name} is already in the database.")
|
||||
return False
|
||||
elif file.size < 1:
|
||||
st.write(f"💨 {file.name} is empty.")
|
||||
return False
|
||||
else:
|
||||
file_extension = os.path.splitext(file.name)[-1]
|
||||
print(file.name, file_extension)
|
||||
if file_extension in file_processors:
|
||||
file_processors[file_extension](vector_store, file)
|
||||
st.write(f"✅ {file.name} ")
|
||||
return True
|
||||
else:
|
||||
st.write(f"❌ {file.name} is not a valid file type.")
|
||||
return False
|
||||
|
||||
def url_uploader(supabase, openai_key, vector_store):
|
||||
url = st.text_input("## Add an url",placeholder="https://www.quiver.app")
|
||||
button = st.button("Add the website page to the database")
|
||||
if button:
|
||||
html = get_html(url)
|
||||
if html:
|
||||
st.write(f"Getting content ... {url} ")
|
||||
file, temp_file_path = create_html_file(url, html)
|
||||
ret = filter_file(file, supabase, vector_store)
|
||||
delete_tempfile(temp_file_path, url, ret)
|
||||
else:
|
||||
st.write(f"❌ Failed to access to {url} .")
|
||||
|
||||
def get_html(url):
|
||||
response = requests.get(url)
|
||||
if response.status_code == 200:
|
||||
return response.text
|
||||
else:
|
||||
return None
|
||||
|
||||
def create_html_file(url, content):
|
||||
file_name = slugify(url) + ".html"
|
||||
temp_file_path = os.path.join(tempfile.gettempdir(), file_name)
|
||||
with open(temp_file_path, 'w') as temp_file:
|
||||
temp_file.write(content)
|
||||
|
||||
record = UploadedFileRec(id=None, name=file_name, type='text/html', data=open(temp_file_path, 'rb').read())
|
||||
uploaded_file = UploadedFile(record)
|
||||
|
||||
return uploaded_file, temp_file_path
|
||||
|
||||
def delete_tempfile(temp_file_path, url, ret):
|
||||
try:
|
||||
os.remove(temp_file_path)
|
||||
if ret:
|
||||
st.write(f"✅ Content saved... {url} ")
|
||||
except OSError as e:
|
||||
print(f"Error while deleting the temporary file: {str(e)}")
|
||||
if ret:
|
||||
st.write(f"❌ Error while saving content... {url} ")
|
||||
|
||||
def slugify(text):
|
||||
text = unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode('utf-8')
|
||||
text = re.sub(r'[^\w\s-]', '', text).strip().lower()
|
||||
text = re.sub(r'[-\s]+', '-', text)
|
||||
return text
|
5
loaders/html.py
Normal file
5
loaders/html.py
Normal file
@ -0,0 +1,5 @@
|
||||
from .common import process_file
|
||||
from langchain.document_loaders import TextLoader
|
||||
|
||||
def process_html(vector_store, file):
|
||||
return process_file(vector_store, file, TextLoader, ".html")
|
3
main.py
3
main.py
@ -3,7 +3,7 @@ import os
|
||||
import tempfile
|
||||
|
||||
import streamlit as st
|
||||
from files import file_uploader
|
||||
from files import file_uploader, url_uploader
|
||||
from question import chat_with_doc
|
||||
from brain import brain
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
@ -64,6 +64,7 @@ if user_choice == 'Add Knowledge':
|
||||
st.session_state['chunk_overlap'] = st.sidebar.slider(
|
||||
"Select Chunk Overlap", 0, 100, st.session_state['chunk_overlap'], 10)
|
||||
file_uploader(supabase, openai_api_key, vector_store)
|
||||
url_uploader(supabase, openai_api_key, vector_store)
|
||||
elif user_choice == 'Chat with your Brain':
|
||||
# Display model and temperature selection only when asking questions
|
||||
st.sidebar.title("Configuration")
|
||||
|
Loading…
Reference in New Issue
Block a user