mirror of
https://github.com/QuivrHQ/quivr.git
synced 2025-01-05 23:03:53 +03:00
Better envs
This commit is contained in:
parent
d39efcddab
commit
a1693d94b2
@ -1,4 +1,4 @@
|
||||
SUPABASE_URL="XXXXX"
|
||||
SUPABASE_SERVICE_KEY="eyXXXXX"
|
||||
OPENAI_API_KEY="sk-XXXXXX"
|
||||
anthropic_api_key="XXXXXX"
|
||||
ANTHROPIC_API_KEY="XXXXXX"
|
@ -1 +1,2 @@
|
||||
ENV=local
|
||||
NEXT_PUBLIC_BACKEND_URL=http://localhost:5050
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -3,6 +3,7 @@ secondbrain/
|
||||
.streamlit/secrets.toml
|
||||
**/*.pyc
|
||||
toto.txt
|
||||
*.ipynb
|
||||
|
||||
|
||||
|
||||
|
@ -81,11 +81,11 @@ Additionally, you'll need a [Supabase](https://supabase.com/) account for:
|
||||
- **Step 2**: Copy the `.XXXXX_env` files
|
||||
|
||||
```bash
|
||||
cp .backend_env.example .backend_env
|
||||
cp .frontend_env.example .frontend_env
|
||||
cp .backend_env.example backend/.env
|
||||
cp .frontend_env.example frontend/.env
|
||||
```
|
||||
|
||||
- **Step 3**: Update the `.backend_env` file
|
||||
- **Step 3**: Update the `backend/.env` file
|
||||
|
||||
> _Your `supabase_service_key` can be found in your Supabase dashboard under Project Settings -> API. Use the `anon` `public` key found in the `Project API keys` section._
|
||||
|
||||
@ -95,6 +95,8 @@ cp .frontend_env.example .frontend_env
|
||||
|
||||
[Migration Script 2](scripts/supabase_usage_table.sql)
|
||||
|
||||
[Migration Script 3](scripts/supabase_vector_store_document.sql)
|
||||
|
||||
- **Step 5**: Launch the app
|
||||
|
||||
```bash
|
||||
|
@ -8,4 +8,4 @@ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt --timeout 100
|
||||
|
||||
COPY . /code/
|
||||
|
||||
CMD ["uvicorn", "api:app", "--reload", "--host", "0.0.0.0", "--port", "5000"]
|
||||
CMD ["uvicorn", "api:app", "--reload", "--host", "0.0.0.0", "--port", "5050"]
|
||||
|
@ -67,14 +67,12 @@ memory = ConversationBufferMemory(
|
||||
class ChatMessage(BaseModel):
|
||||
model: str = "gpt-3.5-turbo"
|
||||
question: str
|
||||
history: List[Tuple[str, str]] # A list of tuples where each tuple is (speaker, text)
|
||||
# A list of tuples where each tuple is (speaker, text)
|
||||
history: List[Tuple[str, str]]
|
||||
temperature: float = 0.0
|
||||
max_tokens: int = 256
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
file_processors = {
|
||||
".txt": process_txt,
|
||||
".csv": process_csv,
|
||||
@ -95,6 +93,7 @@ file_processors = {
|
||||
".ipynb": process_ipnyb,
|
||||
}
|
||||
|
||||
|
||||
async def filter_file(file: UploadFile, supabase, vector_store, stats_db):
|
||||
if await file_already_exists(supabase, file):
|
||||
return {"message": f"🤔 {file.filename} already exists.", "type": "warning"}
|
||||
@ -108,17 +107,19 @@ async def filter_file(file: UploadFile, supabase, vector_store, stats_db):
|
||||
else:
|
||||
return {"message": f"❌ {file.filename} is not supported.", "type": "error"}
|
||||
|
||||
|
||||
@app.post("/upload")
|
||||
async def upload_file(file: UploadFile):
|
||||
message = await filter_file(file, supabase, vector_store, stats_db=None)
|
||||
return message
|
||||
|
||||
|
||||
@app.post("/chat/")
|
||||
async def chat_endpoint(chat_message: ChatMessage):
|
||||
history = chat_message.history
|
||||
# Logic from your Streamlit app goes here. For example:
|
||||
|
||||
#this overwrites the built-in prompt of the ConversationalRetrievalChain
|
||||
# this overwrites the built-in prompt of the ConversationalRetrievalChain
|
||||
ConversationalRetrievalChain.prompts = LANGUAGE_PROMPT
|
||||
|
||||
qa = None
|
||||
@ -137,6 +138,7 @@ async def chat_endpoint(chat_message: ChatMessage):
|
||||
|
||||
return {"history": history}
|
||||
|
||||
|
||||
@app.post("/crawl/")
|
||||
async def crawl_endpoint(crawl_website: CrawlWebsite):
|
||||
|
||||
@ -152,9 +154,11 @@ async def crawl_endpoint(crawl_website: CrawlWebsite):
|
||||
message = await filter_file(file, supabase, vector_store, stats_db=None)
|
||||
return message
|
||||
|
||||
|
||||
@app.get("/explore")
|
||||
async def explore_endpoint():
|
||||
response = supabase.table("documents").select("name:metadata->>file_name, size:metadata->>file_size", count="exact").execute()
|
||||
response = supabase.table("documents").select(
|
||||
"name:metadata->>file_name, size:metadata->>file_size", count="exact").execute()
|
||||
documents = response.data # Access the data from the response
|
||||
# Convert each dictionary to a tuple of items, then to a set to remove duplicates, and then back to a dictionary
|
||||
unique_data = [dict(t) for t in set(tuple(d.items()) for d in documents)]
|
||||
@ -163,22 +167,23 @@ async def explore_endpoint():
|
||||
|
||||
return {"documents": unique_data}
|
||||
|
||||
|
||||
@app.delete("/explore/{file_name}")
|
||||
async def delete_endpoint(file_name: str):
|
||||
response = supabase.table("documents").delete().match({"metadata->>file_name": file_name}).execute()
|
||||
response = supabase.table("documents").delete().match(
|
||||
{"metadata->>file_name": file_name}).execute()
|
||||
return {"message": f"{file_name} has been deleted."}
|
||||
|
||||
|
||||
@app.get("/explore/{file_name}")
|
||||
async def download_endpoint(file_name: str):
|
||||
response = supabase.table("documents").select("metadata->>file_name, metadata->>file_size, metadata->>file_extension, metadata->>file_url").match({"metadata->>file_name": file_name}).execute()
|
||||
response = supabase.table("documents").select(
|
||||
"metadata->>file_name, metadata->>file_size, metadata->>file_extension, metadata->>file_url").match({"metadata->>file_name": file_name}).execute()
|
||||
documents = response.data
|
||||
### Returns all documents with the same file name
|
||||
# Returns all documents with the same file name
|
||||
return {"documents": documents}
|
||||
|
||||
|
||||
|
||||
@app.get("/")
|
||||
async def root():
|
||||
return {"message": "Hello World"}
|
||||
|
||||
|
||||
|
@ -3,7 +3,7 @@ version: "3"
|
||||
services:
|
||||
frontend:
|
||||
env_file:
|
||||
- .frontend_env
|
||||
- ./frontend/.env
|
||||
build:
|
||||
context: frontend
|
||||
dockerfile: Dockerfile
|
||||
@ -17,9 +17,7 @@ services:
|
||||
- 3000:3000
|
||||
backend:
|
||||
env_file:
|
||||
- .backend_env
|
||||
environment:
|
||||
- supabase_url="totot"
|
||||
- ./backend/.env
|
||||
build:
|
||||
context: backend
|
||||
dockerfile: Dockerfile
|
||||
@ -28,4 +26,4 @@ services:
|
||||
volumes:
|
||||
- ./backend/:/code/
|
||||
ports:
|
||||
- 5000:5000
|
||||
- 5050:5050
|
@ -1 +1,2 @@
|
||||
ENV=local
|
||||
BACKEND_URL="http://localhost:5050"
|
@ -28,7 +28,7 @@ export default function ChatPage() {
|
||||
const askQuestion = async () => {
|
||||
setHistory((hist) => [...hist, ["user", question]]);
|
||||
setIsPending(true);
|
||||
const response = await axios.post("http://localhost:5000/chat/", {
|
||||
const response = await axios.post(`${process.env.NEXT_PUBLIC_BACKEND_URL}/chat/`, {
|
||||
model,
|
||||
question,
|
||||
history,
|
||||
|
@ -18,7 +18,8 @@ export default function ExplorePage() {
|
||||
|
||||
const fetchDocuments = async () => {
|
||||
try {
|
||||
const response = await axios.get<{ documents: Document[] }>('http://localhost:5000/explore');
|
||||
console.log(`Fetching documents from ${process.env.NEXT_PUBLIC_BACKEND_URL}/explore`);
|
||||
const response = await axios.get<{ documents: Document[] }>(`${process.env.NEXT_PUBLIC_BACKEND_URL}/explore`);
|
||||
setDocuments(response.data.documents);
|
||||
} catch (error) {
|
||||
console.error('Error fetching documents', error);
|
||||
|
@ -61,7 +61,7 @@ export default function UploadPage() {
|
||||
formData.append("file", file);
|
||||
try {
|
||||
const response = await axios.post(
|
||||
"http://localhost:5000/upload",
|
||||
`${process.env.NEXT_PUBLIC_BACKEND_URL}/upload`,
|
||||
formData
|
||||
);
|
||||
|
||||
|
1627
frontend/package-lock.json
generated
1627
frontend/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@ -34,6 +34,7 @@
|
||||
},
|
||||
"devDependencies": {
|
||||
"@tailwindcss/typography": "^0.5.9",
|
||||
"@types/next": "^9.0.0",
|
||||
"react-icons": "^4.8.0"
|
||||
}
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
create extension vector;
|
||||
|
||||
-- Create a table to store your documents
|
||||
create table documents (
|
||||
create table if not exists documents (
|
||||
id bigserial primary key,
|
||||
content text, -- corresponds to Document.pageContent
|
||||
metadata jsonb, -- corresponds to Document.metadata
|
||||
|
38
scripts/supabase_vector_store_summary.sql
Normal file
38
scripts/supabase_vector_store_summary.sql
Normal file
@ -0,0 +1,38 @@
|
||||
-- Create a table to store your summaries
|
||||
create table if not exists summaries (
|
||||
id bigserial primary key,
|
||||
document_id bigint references documents(id),
|
||||
content text, -- corresponds to the summarized content
|
||||
metadata jsonb, -- corresponds to Document.metadata
|
||||
embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed
|
||||
);
|
||||
|
||||
CREATE OR REPLACE FUNCTION match_summaries(query_embedding vector(1536), match_count int, match_threshold float)
|
||||
RETURNS TABLE(
|
||||
id bigint,
|
||||
document_id bigint,
|
||||
content text,
|
||||
metadata jsonb,
|
||||
-- we return matched vectors to enable maximal marginal relevance searches
|
||||
embedding vector(1536),
|
||||
similarity float)
|
||||
LANGUAGE plpgsql
|
||||
AS $$
|
||||
# variable_conflict use_column
|
||||
BEGIN
|
||||
RETURN query
|
||||
SELECT
|
||||
id,
|
||||
document_id,
|
||||
content,
|
||||
metadata,
|
||||
embedding,
|
||||
1 -(summaries.embedding <=> query_embedding) AS similarity
|
||||
FROM
|
||||
summaries
|
||||
WHERE 1 - (summaries.embedding <=> query_embedding) > match_threshold
|
||||
ORDER BY
|
||||
summaries.embedding <=> query_embedding
|
||||
LIMIT match_count;
|
||||
END;
|
||||
$$;
|
Loading…
Reference in New Issue
Block a user