mirror of
https://github.com/QuivrHQ/quivr.git
synced 2024-12-14 17:03:29 +03:00
feat(ingestion): Add ingestion module and routes (#2393)
This pull request adds the ingestion module and routes to the project. It includes the necessary files and code changes to implement the ingestion functionality.
This commit is contained in:
parent
65c0ed505e
commit
a95e311712
@ -189,6 +189,8 @@ def process_integration_brain_sync():
|
||||
time = datetime.now(timezone.utc) # Make `time` timezone-aware
|
||||
# last_synced is a string that represents a timestampz in the database
|
||||
# only call process_integration_brain_sync_user_brain if more than 1 day has passed since the last sync
|
||||
if not integrations:
|
||||
return
|
||||
for integration in integrations:
|
||||
print(f"last_synced: {integration.last_synced}") # Add this line
|
||||
last_synced = datetime.strptime(
|
||||
|
@ -15,6 +15,7 @@ from modules.api_key.controller import api_key_router
|
||||
from modules.brain.controller import brain_router
|
||||
from modules.chat.controller import chat_router
|
||||
from modules.contact_support.controller import contact_router
|
||||
from modules.ingestion.controller import ingestion_router
|
||||
from modules.knowledge.controller import knowledge_router
|
||||
from modules.misc.controller import misc_router
|
||||
from modules.notification.controller import notification_router
|
||||
@ -70,6 +71,7 @@ add_cors_middleware(app)
|
||||
app.include_router(brain_router)
|
||||
app.include_router(chat_router)
|
||||
app.include_router(crawl_router)
|
||||
app.include_router(ingestion_router)
|
||||
app.include_router(onboarding_router)
|
||||
app.include_router(misc_router)
|
||||
|
||||
|
0
backend/modules/ingestion/__init__.py
Normal file
0
backend/modules/ingestion/__init__.py
Normal file
1
backend/modules/ingestion/controller/__init__.py
Normal file
1
backend/modules/ingestion/controller/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .ingestion_routes import ingestion_router
|
82
backend/modules/ingestion/controller/ingestion_routes.py
Normal file
82
backend/modules/ingestion/controller/ingestion_routes.py
Normal file
@ -0,0 +1,82 @@
|
||||
from typing import List
|
||||
from uuid import UUID
|
||||
|
||||
from fastapi import APIRouter, Depends, File, Query, UploadFile
|
||||
from logger import get_logger
|
||||
from middlewares.auth import AuthBearer, get_current_user
|
||||
from modules.ingestion.entity.ingestion import IngestionEntity
|
||||
from modules.ingestion.ito.audio_transcript import AudioTranscriptIngestion
|
||||
from modules.ingestion.ito.crawler import CrawlerIngestion
|
||||
from modules.ingestion.ito.summary import SummaryIngestion
|
||||
from modules.ingestion.service.ingestion import Ingestion
|
||||
from modules.user.entity.user_identity import UserIdentity
|
||||
|
||||
ingestion_router = APIRouter()
|
||||
logger = get_logger(__name__)
|
||||
|
||||
ingestion_service = Ingestion()
|
||||
|
||||
|
||||
@ingestion_router.get(
|
||||
"/ingestion", dependencies=[Depends(AuthBearer())], tags=["Ingestion"]
|
||||
)
|
||||
async def list_ingestion(
|
||||
current_user: UserIdentity = Depends(get_current_user),
|
||||
) -> List[IngestionEntity]:
|
||||
"""
|
||||
Retrieve and list all the knowledge in a brain.
|
||||
"""
|
||||
|
||||
ingestions = ingestion_service.get_all_ingestions()
|
||||
return ingestions
|
||||
|
||||
|
||||
@ingestion_router.post(
|
||||
"/ingestion/{ingestion_id}/process",
|
||||
dependencies=[Depends(AuthBearer())],
|
||||
tags=["Ingestion"],
|
||||
)
|
||||
async def process_ingestion(
|
||||
ingestion_id: UUID,
|
||||
file_1: UploadFile = File(None),
|
||||
current_user: UserIdentity = Depends(get_current_user),
|
||||
brain_id: UUID = Query(None, description="The ID of the brain"),
|
||||
send_file_email: bool = Query(False, description="Send the file by email"),
|
||||
url: str = Query(None, description="The URL to process"),
|
||||
):
|
||||
if ingestion_id is None:
|
||||
raise ValueError("Ingestion ID is required")
|
||||
|
||||
ingestion = ingestion_service.get_ingestion_by_id(ingestion_id)
|
||||
|
||||
if ingestion.name == "summary":
|
||||
summary = SummaryIngestion(
|
||||
uploadFile=file_1,
|
||||
current_user=current_user,
|
||||
brain_id=brain_id,
|
||||
send_file_email=send_file_email,
|
||||
url=url,
|
||||
)
|
||||
return await summary.process_ingestion()
|
||||
|
||||
if ingestion.name == "audio_transcript":
|
||||
audio_summary = AudioTranscriptIngestion(
|
||||
uploadFile=file_1,
|
||||
current_user=current_user,
|
||||
brain_id=brain_id,
|
||||
send_file_email=send_file_email,
|
||||
url=url,
|
||||
)
|
||||
return await audio_summary.process_ingestion()
|
||||
|
||||
if ingestion.name == "crawler":
|
||||
crawler = CrawlerIngestion(
|
||||
uploadFile=file_1,
|
||||
current_user=current_user,
|
||||
brain_id=brain_id,
|
||||
send_file_email=send_file_email,
|
||||
url=url,
|
||||
)
|
||||
return await crawler.process_ingestion()
|
||||
|
||||
return {"message": "Not found"}
|
2
backend/modules/ingestion/dto/__init__.py
Normal file
2
backend/modules/ingestion/dto/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
from .inputs import CreateKnowledgeProperties
|
||||
from .outputs import DeleteKnowledgeResponse
|
18
backend/modules/ingestion/dto/inputs.py
Normal file
18
backend/modules/ingestion/dto/inputs.py
Normal file
@ -0,0 +1,18 @@
|
||||
from typing import Optional
|
||||
from uuid import UUID
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class CreateKnowledgeProperties(BaseModel):
|
||||
brain_id: UUID
|
||||
file_name: Optional[str] = None
|
||||
url: Optional[str] = None
|
||||
extension: str = "txt"
|
||||
integration: Optional[str] = None
|
||||
integration_link: Optional[str] = None
|
||||
|
||||
def dict(self, *args, **kwargs):
|
||||
knowledge_dict = super().dict(*args, **kwargs)
|
||||
knowledge_dict["brain_id"] = str(knowledge_dict.get("brain_id"))
|
||||
return knowledge_dict
|
8
backend/modules/ingestion/dto/outputs.py
Normal file
8
backend/modules/ingestion/dto/outputs.py
Normal file
@ -0,0 +1,8 @@
|
||||
from uuid import UUID
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class DeleteKnowledgeResponse(BaseModel):
|
||||
status: str = "delete"
|
||||
knowledge_id: UUID
|
1
backend/modules/ingestion/entity/__init__.py
Normal file
1
backend/modules/ingestion/entity/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .ingestion import IngestionEntity
|
10
backend/modules/ingestion/entity/ingestion.py
Normal file
10
backend/modules/ingestion/entity/ingestion.py
Normal file
@ -0,0 +1,10 @@
|
||||
from uuid import UUID
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class IngestionEntity(BaseModel):
|
||||
id: UUID
|
||||
name: str
|
||||
brain_id_required: bool
|
||||
file_1_required: bool
|
0
backend/modules/ingestion/ito/__init__.py
Normal file
0
backend/modules/ingestion/ito/__init__.py
Normal file
47
backend/modules/ingestion/ito/audio_transcript.py
Normal file
47
backend/modules/ingestion/ito/audio_transcript.py
Normal file
@ -0,0 +1,47 @@
|
||||
import os
|
||||
from tempfile import NamedTemporaryFile
|
||||
|
||||
from logger import get_logger
|
||||
from modules.ingestion.ito.ito import ITO
|
||||
from openai import OpenAI
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class AudioTranscriptIngestion(ITO):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
async def process_ingestion(self):
|
||||
client = OpenAI()
|
||||
|
||||
logger.info(f"Processing audio file {self.uploadFile.filename}")
|
||||
|
||||
# Extract the original filename and create a temporary file with the same name
|
||||
filename = os.path.basename(self.uploadFile.filename)
|
||||
temp_file = NamedTemporaryFile(delete=False, suffix=filename)
|
||||
|
||||
# Write the uploaded file's data to the temporary file
|
||||
data = await self.uploadFile.read()
|
||||
temp_file.write(data)
|
||||
temp_file.close()
|
||||
|
||||
# Open the temporary file and pass it to the OpenAI API
|
||||
with open(temp_file.name, "rb") as file:
|
||||
transcription = client.audio.transcriptions.create(
|
||||
model="whisper-1", file=file, response_format="text"
|
||||
)
|
||||
logger.info(f"Transcription: {transcription}")
|
||||
|
||||
# Delete the temporary file
|
||||
os.remove(temp_file.name)
|
||||
|
||||
return await self.create_and_upload_processed_file(
|
||||
transcription, self.uploadFile.filename, "Audio Transcript"
|
||||
)
|
33
backend/modules/ingestion/ito/crawler.py
Normal file
33
backend/modules/ingestion/ito/crawler.py
Normal file
@ -0,0 +1,33 @@
|
||||
from bs4 import BeautifulSoup as Soup
|
||||
from langchain_community.document_loaders.recursive_url_loader import RecursiveUrlLoader
|
||||
from logger import get_logger
|
||||
from modules.ingestion.ito.ito import ITO
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class CrawlerIngestion(ITO):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
async def process_ingestion(self):
|
||||
|
||||
url = self.url
|
||||
loader = RecursiveUrlLoader(
|
||||
url=url, max_depth=2, extractor=lambda x: Soup(x, "html.parser").text
|
||||
)
|
||||
docs = loader.load()
|
||||
|
||||
nice_url = url.split("://")[1].replace("/", "_").replace(".", "_")
|
||||
nice_url += ".txt"
|
||||
|
||||
for docs in docs:
|
||||
await self.create_and_upload_processed_file(
|
||||
docs.page_content, nice_url, "Crawler"
|
||||
)
|
114
backend/modules/ingestion/ito/ito.py
Normal file
114
backend/modules/ingestion/ito/ito.py
Normal file
@ -0,0 +1,114 @@
|
||||
import random
|
||||
from abc import abstractmethod
|
||||
from io import BytesIO
|
||||
from tempfile import NamedTemporaryFile
|
||||
from uuid import UUID
|
||||
|
||||
from fastapi import UploadFile
|
||||
from logger import get_logger
|
||||
from modules.contact_support.controller.settings import ContactsSettings
|
||||
from modules.upload.controller.upload_routes import upload_file
|
||||
from modules.user.entity.user_identity import UserIdentity
|
||||
from packages.emails.send_email import send_email
|
||||
from pydantic import BaseModel
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class ITO(BaseModel):
|
||||
uploadFile: UploadFile | None = None
|
||||
current_user: UserIdentity = None
|
||||
brain_id: UUID | None = None
|
||||
send_file_email: bool = False
|
||||
url: str | None = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
uploadFile: UploadFile,
|
||||
current_user: UserIdentity,
|
||||
brain_id: UUID,
|
||||
send_file_email: bool = False,
|
||||
url: str = None,
|
||||
):
|
||||
super().__init__(
|
||||
uploadFile=uploadFile,
|
||||
current_user=current_user,
|
||||
brain_id=brain_id,
|
||||
send_file_email=send_file_email,
|
||||
url=url,
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
async def process_ingestion(self):
|
||||
pass
|
||||
|
||||
async def send_output_by_email(
|
||||
self, file: UploadFile, name: str, custom_message: str = None
|
||||
):
|
||||
settings = ContactsSettings()
|
||||
file = await self.uploadfile_to_file(file)
|
||||
|
||||
with open(file.name, "rb") as f:
|
||||
|
||||
mail_from = settings.resend_contact_sales_from
|
||||
mail_to = self.current_user.email
|
||||
body = f"""
|
||||
<p>{custom_message}</p>
|
||||
"""
|
||||
params = {
|
||||
"from": mail_from,
|
||||
"to": mail_to,
|
||||
"subject": "Quivr Ingestion Processed",
|
||||
"reply_to": "no-reply@quivr.app",
|
||||
"html": body,
|
||||
"attachments": [{"filename": name, "content": list(f.read())}],
|
||||
}
|
||||
logger.info(f"Sending email to {mail_to} with file {name}")
|
||||
send_email(params)
|
||||
|
||||
async def uploadfile_to_file(self, uploadFile: UploadFile):
|
||||
# Transform the UploadFile object to a file object with same name and content
|
||||
tmp_file = NamedTemporaryFile(delete=False)
|
||||
tmp_file.write(uploadFile.file.read())
|
||||
tmp_file.flush() # Make sure all data is written to disk
|
||||
return tmp_file
|
||||
|
||||
async def create_and_upload_processed_file(
|
||||
self, processed_content: str, original_filename: str, file_description: str
|
||||
) -> dict:
|
||||
"""Handles creation and uploading of the processed file."""
|
||||
content_io = BytesIO(processed_content.encode("utf-8"))
|
||||
content_io.seek(0)
|
||||
|
||||
new_filename = (
|
||||
original_filename.split(".")[0]
|
||||
+ "_"
|
||||
+ file_description.lower().replace(" ", "_")
|
||||
+ "_"
|
||||
+ str(random.randint(1000, 9999))
|
||||
+ ".txt"
|
||||
)
|
||||
|
||||
file_to_upload = UploadFile(
|
||||
filename=new_filename,
|
||||
file=content_io,
|
||||
headers={"content-type": "text/plain"},
|
||||
)
|
||||
|
||||
if self.send_file_email:
|
||||
await self.send_output_by_email(
|
||||
file_to_upload,
|
||||
new_filename,
|
||||
f"{file_description} of {original_filename}",
|
||||
)
|
||||
|
||||
# Reset to start of file before upload
|
||||
file_to_upload.file.seek(0)
|
||||
await upload_file(
|
||||
uploadFile=file_to_upload,
|
||||
brain_id=self.brain_id,
|
||||
current_user=self.current_user,
|
||||
chat_id=None,
|
||||
)
|
||||
|
||||
return {"message": f"{file_description} generated successfully"}
|
100
backend/modules/ingestion/ito/summary.py
Normal file
100
backend/modules/ingestion/ito/summary.py
Normal file
@ -0,0 +1,100 @@
|
||||
import tempfile
|
||||
|
||||
from langchain.chains import (
|
||||
MapReduceDocumentsChain,
|
||||
ReduceDocumentsChain,
|
||||
StuffDocumentsChain,
|
||||
)
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain_community.chat_models import ChatLiteLLM
|
||||
from langchain_community.document_loaders import UnstructuredPDFLoader
|
||||
from langchain_core.prompts import PromptTemplate
|
||||
from langchain_text_splitters import CharacterTextSplitter
|
||||
from logger import get_logger
|
||||
from modules.ingestion.ito.ito import ITO
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class SummaryIngestion(ITO):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
async def process_ingestion(self):
|
||||
|
||||
# Create a temporary file with the uploaded file as a temporary file and then pass it to the loader
|
||||
tmp_file = tempfile.NamedTemporaryFile(delete=False)
|
||||
|
||||
# Write the file to the temporary file
|
||||
tmp_file.write(self.uploadFile.file.read())
|
||||
|
||||
# Now pass the path of the temporary file to the loader
|
||||
|
||||
loader = UnstructuredPDFLoader(tmp_file.name)
|
||||
|
||||
tmp_file.close()
|
||||
|
||||
data = loader.load()
|
||||
|
||||
llm = ChatLiteLLM(model="gpt-3.5-turbo")
|
||||
|
||||
map_template = """The following is a set of documents
|
||||
{docs}
|
||||
Based on this list of docs, please identify the main themes
|
||||
Helpful Answer:"""
|
||||
map_prompt = PromptTemplate.from_template(map_template)
|
||||
map_chain = LLMChain(llm=llm, prompt=map_prompt)
|
||||
|
||||
# Reduce
|
||||
reduce_template = """The following is set of summaries:
|
||||
{docs}
|
||||
Take these and distill it into a final, consolidated summary of the main themes.
|
||||
Helpful Answer:"""
|
||||
reduce_prompt = PromptTemplate.from_template(reduce_template)
|
||||
|
||||
# Run chain
|
||||
reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt)
|
||||
|
||||
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
|
||||
combine_documents_chain = StuffDocumentsChain(
|
||||
llm_chain=reduce_chain, document_variable_name="docs"
|
||||
)
|
||||
|
||||
# Combines and iteratively reduces the mapped documents
|
||||
reduce_documents_chain = ReduceDocumentsChain(
|
||||
# This is final chain that is called.
|
||||
combine_documents_chain=combine_documents_chain,
|
||||
# If documents exceed context for `StuffDocumentsChain`
|
||||
collapse_documents_chain=combine_documents_chain,
|
||||
# The maximum number of tokens to group documents into.
|
||||
token_max=4000,
|
||||
)
|
||||
|
||||
# Combining documents by mapping a chain over them, then combining results
|
||||
map_reduce_chain = MapReduceDocumentsChain(
|
||||
# Map chain
|
||||
llm_chain=map_chain,
|
||||
# Reduce chain
|
||||
reduce_documents_chain=reduce_documents_chain,
|
||||
# The variable name in the llm_chain to put the documents in
|
||||
document_variable_name="docs",
|
||||
# Return the results of the map steps in the output
|
||||
return_intermediate_steps=False,
|
||||
)
|
||||
|
||||
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
|
||||
chunk_size=1000, chunk_overlap=0
|
||||
)
|
||||
split_docs = text_splitter.split_documents(data)
|
||||
|
||||
content = map_reduce_chain.run(split_docs)
|
||||
|
||||
return await self.create_and_upload_processed_file(
|
||||
content, self.uploadFile.filename, "Summary"
|
||||
)
|
1
backend/modules/ingestion/repository/__init__.py
Normal file
1
backend/modules/ingestion/repository/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .ingestion_interface import IngestionInterface
|
16
backend/modules/ingestion/repository/ingestion_interface.py
Normal file
16
backend/modules/ingestion/repository/ingestion_interface.py
Normal file
@ -0,0 +1,16 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List
|
||||
|
||||
from modules.ingestion.entity.ingestion import IngestionEntity
|
||||
|
||||
|
||||
class IngestionInterface(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def get_all_ingestions(self) -> List[IngestionEntity]:
|
||||
"""
|
||||
Get all the knowledge in a brain
|
||||
Args:
|
||||
brain_id (UUID): The id of the brain
|
||||
"""
|
||||
pass
|
0
backend/modules/ingestion/service/__init__.py
Normal file
0
backend/modules/ingestion/service/__init__.py
Normal file
30
backend/modules/ingestion/service/ingestion.py
Normal file
30
backend/modules/ingestion/service/ingestion.py
Normal file
@ -0,0 +1,30 @@
|
||||
from models.settings import get_supabase_client
|
||||
from modules.ingestion.entity.ingestion import IngestionEntity
|
||||
from modules.ingestion.repository.ingestion_interface import IngestionInterface
|
||||
|
||||
|
||||
class Ingestion(IngestionInterface):
|
||||
def __init__(self):
|
||||
supabase_client = get_supabase_client()
|
||||
self.db = supabase_client
|
||||
|
||||
def get_all_ingestions(self):
|
||||
response = self.db.from_("ingestions").select("*").execute()
|
||||
|
||||
if response.data:
|
||||
return response.data
|
||||
|
||||
return []
|
||||
|
||||
def get_ingestion_by_id(self, ingestion_id) -> IngestionEntity:
|
||||
response = (
|
||||
self.db.from_("ingestions")
|
||||
.select("*")
|
||||
.filter("id", "eq", ingestion_id)
|
||||
.execute()
|
||||
)
|
||||
|
||||
if response.data:
|
||||
return IngestionEntity(**response.data[0])
|
||||
|
||||
return None
|
@ -3,7 +3,7 @@ from typing import Optional
|
||||
from uuid import UUID
|
||||
|
||||
from celery_worker import process_file_and_notify
|
||||
from fastapi import APIRouter, Depends, HTTPException, Query, Request, UploadFile
|
||||
from fastapi import APIRouter, Depends, HTTPException, Query, UploadFile
|
||||
from logger import get_logger
|
||||
from middlewares.auth import AuthBearer, get_current_user
|
||||
from models import UserUsage
|
||||
@ -38,7 +38,6 @@ async def healthz():
|
||||
|
||||
@upload_router.post("/upload", dependencies=[Depends(AuthBearer())], tags=["Upload"])
|
||||
async def upload_file(
|
||||
request: Request,
|
||||
uploadFile: UploadFile,
|
||||
brain_id: UUID = Query(..., description="The ID of the brain"),
|
||||
chat_id: Optional[UUID] = Query(None, description="The ID of the chat"),
|
||||
@ -47,7 +46,8 @@ async def upload_file(
|
||||
validate_brain_authorization(
|
||||
brain_id, current_user.id, [RoleEnum.Editor, RoleEnum.Owner]
|
||||
)
|
||||
|
||||
uploadFile.file.seek(0)
|
||||
logger.info(f"Uploading file {uploadFile.filename} to brain {brain_id}")
|
||||
user_daily_usage = UserUsage(
|
||||
id=current_user.id,
|
||||
email=current_user.email,
|
||||
@ -72,6 +72,8 @@ async def upload_file(
|
||||
)
|
||||
|
||||
file_content = await uploadFile.read()
|
||||
logger.info(f"File {uploadFile.filename} read successfully")
|
||||
logger.info(f"Content length: {len(file_content)}")
|
||||
filename_with_brain_id = str(brain_id) + "/" + str(uploadFile.filename)
|
||||
|
||||
try:
|
||||
|
@ -1,4 +1,5 @@
|
||||
import hashlib
|
||||
from io import BytesIO
|
||||
|
||||
from fastapi import UploadFile
|
||||
|
||||
@ -17,6 +18,10 @@ def convert_bytes(bytes, precision=2):
|
||||
|
||||
|
||||
def get_file_size(file: UploadFile):
|
||||
if isinstance(file.file, BytesIO):
|
||||
# If the file object is a BytesIO object, get the size of the bytes data
|
||||
file_size = len(file.file.getvalue())
|
||||
return file_size
|
||||
# move the cursor to the end of the file
|
||||
file.file._file.seek(0, 2) # pyright: ignore reportPrivateUsage=none
|
||||
file_size = (
|
||||
|
69
supabase/migrations/20240330233534_ingestion.sql
Normal file
69
supabase/migrations/20240330233534_ingestion.sql
Normal file
@ -0,0 +1,69 @@
|
||||
create table "public"."ingestions" (
|
||||
"name" text,
|
||||
"id" uuid not null default gen_random_uuid()
|
||||
);
|
||||
|
||||
|
||||
alter table "public"."ingestions" enable row level security;
|
||||
|
||||
CREATE UNIQUE INDEX ingestions_pkey ON public.ingestions USING btree (id);
|
||||
|
||||
alter table "public"."ingestions" add constraint "ingestions_pkey" PRIMARY KEY using index "ingestions_pkey";
|
||||
|
||||
grant delete on table "public"."ingestions" to "anon";
|
||||
|
||||
grant insert on table "public"."ingestions" to "anon";
|
||||
|
||||
grant references on table "public"."ingestions" to "anon";
|
||||
|
||||
grant select on table "public"."ingestions" to "anon";
|
||||
|
||||
grant trigger on table "public"."ingestions" to "anon";
|
||||
|
||||
grant truncate on table "public"."ingestions" to "anon";
|
||||
|
||||
grant update on table "public"."ingestions" to "anon";
|
||||
|
||||
grant delete on table "public"."ingestions" to "authenticated";
|
||||
|
||||
grant insert on table "public"."ingestions" to "authenticated";
|
||||
|
||||
grant references on table "public"."ingestions" to "authenticated";
|
||||
|
||||
grant select on table "public"."ingestions" to "authenticated";
|
||||
|
||||
grant trigger on table "public"."ingestions" to "authenticated";
|
||||
|
||||
grant truncate on table "public"."ingestions" to "authenticated";
|
||||
|
||||
grant update on table "public"."ingestions" to "authenticated";
|
||||
|
||||
grant delete on table "public"."ingestions" to "service_role";
|
||||
|
||||
grant insert on table "public"."ingestions" to "service_role";
|
||||
|
||||
grant references on table "public"."ingestions" to "service_role";
|
||||
|
||||
grant select on table "public"."ingestions" to "service_role";
|
||||
|
||||
grant trigger on table "public"."ingestions" to "service_role";
|
||||
|
||||
grant truncate on table "public"."ingestions" to "service_role";
|
||||
|
||||
grant update on table "public"."ingestions" to "service_role";
|
||||
|
||||
create policy "INGESTION"
|
||||
on "public"."ingestions"
|
||||
as permissive
|
||||
for all
|
||||
to service_role;
|
||||
|
||||
|
||||
create policy "INTEGRATIONS"
|
||||
on "public"."integrations"
|
||||
as permissive
|
||||
for all
|
||||
to service_role;
|
||||
|
||||
|
||||
|
5
supabase/migrations/20240402005455_ingestion.sql
Normal file
5
supabase/migrations/20240402005455_ingestion.sql
Normal file
@ -0,0 +1,5 @@
|
||||
alter table "public"."ingestions" add column "brain_id_required" boolean not null default true;
|
||||
|
||||
alter table "public"."ingestions" add column "file_1_required" boolean not null default false;
|
||||
|
||||
|
3
supabase/migrations/20240402013303_ingestion_url.sql
Normal file
3
supabase/migrations/20240402013303_ingestion_url.sql
Normal file
@ -0,0 +1,3 @@
|
||||
alter table "public"."ingestions" add column "url_required" boolean default false;
|
||||
|
||||
|
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user