feat(metadata): updated metadata

This commit is contained in:
Stan Girard 2023-05-13 00:39:40 +02:00
parent bc7e84b1f9
commit badb27bf19
2 changed files with 9 additions and 4 deletions

View File

@ -1,7 +1,7 @@
import os
import tempfile
from io import BytesIO
import time
import openai
import streamlit as st
from langchain.document_loaders import TextLoader
@ -16,6 +16,7 @@ from langchain.schema import Document
def _transcribe_audio(api_key, audio_file):
openai.api_key = api_key
transcript = ""
with BytesIO(audio_file.read()) as audio_bytes:
# Get the extension of the uploaded file
file_extension = os.path.splitext(audio_file.name)[-1]
@ -32,7 +33,8 @@ def _transcribe_audio(api_key, audio_file):
def process_audio(openai_api_key, vector_store, file_name):
file_sha = ""
dateshort = time.strftime("%Y%m%d-%H%M%S")
file_name = f"audiotranscript_{dateshort}.audio"
transcript = _transcribe_audio(openai_api_key, file_name)
file_sha = compute_sha1_from_content(transcript.text.encode("utf-8"))
@ -44,7 +46,7 @@ def process_audio(openai_api_key, vector_store, file_name):
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_text(transcript.text)
docs_with_metadata = [Document(page_content=text, metadata={"file_sha1": file_sha}) for text in texts]
docs_with_metadata = [Document(page_content=text, metadata={"file_sha1": file_sha,"file_name": file_name, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort}) for text in texts]
vector_store.add_documents(docs_with_metadata)

View File

@ -1,4 +1,5 @@
import tempfile
import time
from utils import compute_sha1_from_file
from langchain.schema import Document
import streamlit as st
@ -7,6 +8,8 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
def process_file(vector_store, file, loader_class, file_suffix):
documents = []
file_sha = ""
file_name = file.name
dateshort = time.strftime("%Y%m%d")
with tempfile.NamedTemporaryFile(delete=True, suffix=file_suffix) as tmp_file:
tmp_file.write(file.getvalue())
tmp_file.flush()
@ -23,7 +26,7 @@ def process_file(vector_store, file, loader_class, file_suffix):
documents = text_splitter.split_documents(documents)
# Add the document sha1 as metadata to each document
docs_with_metadata = [Document(page_content=doc.page_content, metadata={"file_sha1": file_sha1}) for doc in documents]
docs_with_metadata = [Document(page_content=doc.page_content, metadata={"file_sha1": file_sha1, "file_name": file_name, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort}) for doc in documents]
vector_store.add_documents(docs_with_metadata)
return