# main.py import os import tempfile import streamlit as st from files import file_uploader, url_uploader from question import chat_with_doc from brain import brain from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import SupabaseVectorStore from supabase import Client, create_client from explorer import view_document from stats import get_usage_today supabase_url = st.secrets.supabase_url supabase_key = st.secrets.supabase_service_key openai_api_key = st.secrets.openai_api_key anthropic_api_key = st.secrets.anthropic_api_key supabase: Client = create_client(supabase_url, supabase_key) self_hosted = st.secrets.self_hosted embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) vector_store = SupabaseVectorStore( supabase, embeddings, table_name="documents") models = ["gpt-3.5-turbo", "gpt-4"] if anthropic_api_key: models += ["claude-v1", "claude-v1.3", "claude-instant-v1-100k", "claude-instant-v1.1-100k"] # Set the theme st.set_page_config( page_title="Quivr", layout="wide", initial_sidebar_state="expanded", ) st.title("🧠 Quivr - Your second brain 🧠") st.markdown("Store your knowledge in a vector store and query it with OpenAI's GPT-3/4.") if self_hosted == "false": st.markdown('**📢 Note: In the public demo, access to functionality is restricted. You can only use the GPT-3.5-turbo model and upload files up to 1Mb. To use more models and upload larger files, consider self-hosting Quivr.**') st.markdown("---\n\n") st.session_state["overused"] = False if self_hosted == "false": usage = get_usage_today(supabase) if usage > st.secrets.usage_limit: st.markdown( f"You have used {usage} tokens today, which is more than your daily limit of {st.secrets.usage_limit} tokens. Please come back later or consider self-hosting.", unsafe_allow_html=True) st.session_state["overused"] = True else: st.markdown(f"Usage today: {usage} tokens out of {st.secrets.usage_limit}", unsafe_allow_html=True) st.write("---") # Initialize session state variables if 'model' not in st.session_state: st.session_state['model'] = "gpt-3.5-turbo" if 'temperature' not in st.session_state: st.session_state['temperature'] = 0.0 if 'chunk_size' not in st.session_state: st.session_state['chunk_size'] = 500 if 'chunk_overlap' not in st.session_state: st.session_state['chunk_overlap'] = 0 if 'max_tokens' not in st.session_state: st.session_state['max_tokens'] = 256 # Create a radio button for user to choose between adding knowledge or asking a question user_choice = st.radio( "Choose an action", ('Add Knowledge', 'Chat with your Brain', 'Forget', "Explore")) st.markdown("---\n\n") if user_choice == 'Add Knowledge': # Display chunk size and overlap selection only when adding knowledge st.sidebar.title("Configuration") st.sidebar.markdown( "Choose your chunk size and overlap for adding knowledge.") st.session_state['chunk_size'] = st.sidebar.slider( "Select Chunk Size", 100, 1000, st.session_state['chunk_size'], 50) st.session_state['chunk_overlap'] = st.sidebar.slider( "Select Chunk Overlap", 0, 100, st.session_state['chunk_overlap'], 10) # Create two columns for the file uploader and URL uploader col1, col2 = st.columns(2) with col1: file_uploader(supabase, vector_store) with col2: url_uploader(supabase, vector_store) elif user_choice == 'Chat with your Brain': # Display model and temperature selection only when asking questions st.sidebar.title("Configuration") st.sidebar.markdown( "Choose your model and temperature for asking questions.") if self_hosted != "false": st.session_state['model'] = st.sidebar.selectbox( "Select Model", models, index=(models).index(st.session_state['model'])) else: st.sidebar.write("**Model**: gpt-3.5-turbo") st.sidebar.write("**Self Host to unlock more models such as claude-v1 and GPT4**") st.session_state['model'] = "gpt-3.5-turbo" st.session_state['temperature'] = st.sidebar.slider( "Select Temperature", 0.0, 1.0, st.session_state['temperature'], 0.1) if st.secrets.self_hosted != "false": st.session_state['max_tokens'] = st.sidebar.slider( "Select Max Tokens", 256, 2048, st.session_state['max_tokens'], 2048) else: st.session_state['max_tokens'] = 256 chat_with_doc(st.session_state['model'], vector_store, stats_db=supabase) elif user_choice == 'Forget': st.sidebar.title("Configuration") brain(supabase) elif user_choice == 'Explore': st.sidebar.title("Configuration") view_document(supabase) st.markdown("---\n\n")