from typing import Any, List from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores import SupabaseVectorStore from supabase.client import Client class CustomSupabaseVectorStore(SupabaseVectorStore): """A custom vector store that uses the match_vectors table instead of the vectors table.""" brain_id: str = "none" def __init__( self, client: Client, embedding: Embeddings, table_name: str, brain_id: str = "none", ): super().__init__(client, embedding, table_name) self.brain_id = brain_id def similarity_search( self, query: str, k: int = 6, table: str = "match_vectors", threshold: float = 0.5, **kwargs: Any ) -> List[Document]: vectors = self._embedding.embed_documents([query]) query_embedding = vectors[0] res = self._client.rpc( table, { "query_embedding": query_embedding, "match_count": k, "p_brain_id": str(self.brain_id), }, ).execute() match_result = [ ( Document( metadata={ **search.get("metadata", {}), "id": search.get("id", ""), "similarity": search.get("similarity", 0.0), }, page_content=search.get("content", ""), ), search.get("similarity", 0.0), ) for search in res.data if search.get("content") ] documents = [doc for doc, _ in match_result] return documents