import asyncio import json from typing import AsyncIterable, Awaitable, List, Optional from uuid import UUID from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler from langchain.chains import LLMChain from langchain.chat_models import ChatLiteLLM from langchain.chat_models.base import BaseChatModel from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate from llm.utils.get_prompt_to_use import get_prompt_to_use from llm.utils.get_prompt_to_use_id import get_prompt_to_use_id from logger import get_logger from models.chats import ChatQuestion from models.databases.supabase.chats import CreateChatHistory from models.prompt import Prompt from pydantic import BaseModel from repository.chat import ( GetChatHistoryOutput, format_chat_history, format_history_to_openai_mesages, get_chat_history, update_chat_history, update_message_by_id, ) logger = get_logger(__name__) SYSTEM_MESSAGE = "Your name is Quivr. You're a helpful assistant. If you don't know the answer, just say that you don't know, don't try to make up an answer.When answering use markdown or any other techniques to display the content in a nice and aerated way." class HeadlessQA(BaseModel): model: str temperature: float = 0.0 max_tokens: int = 256 user_openai_api_key: Optional[str] = None openai_api_key: Optional[str] = None streaming: bool = False chat_id: str callbacks: Optional[List[AsyncIteratorCallbackHandler]] = None prompt_id: Optional[UUID] = None def _determine_api_key(self, openai_api_key, user_openai_api_key): """If user provided an API key, use it.""" if user_openai_api_key is not None: return user_openai_api_key else: return openai_api_key def _determine_streaming(self, streaming: bool) -> bool: """If the model name allows for streaming and streaming is declared, set streaming to True.""" return streaming def _determine_callback_array( self, streaming ) -> List[AsyncIteratorCallbackHandler]: """If streaming is set, set the AsyncIteratorCallbackHandler as the only callback.""" if streaming: return [AsyncIteratorCallbackHandler()] else: return [] def __init__(self, **data): super().__init__(**data) print("in HeadlessQA") self.openai_api_key = self._determine_api_key( self.openai_api_key, self.user_openai_api_key ) self.streaming = self._determine_streaming(self.streaming) self.callbacks = self._determine_callback_array(self.streaming) @property def prompt_to_use(self) -> Optional[Prompt]: return get_prompt_to_use(None, self.prompt_id) @property def prompt_to_use_id(self) -> Optional[UUID]: return get_prompt_to_use_id(None, self.prompt_id) def _create_llm( self, model, temperature=0, streaming=False, callbacks=None ) -> BaseChatModel: """ Determine the language model to be used. :param model: Language model name to be used. :param streaming: Whether to enable streaming of the model :param callbacks: Callbacks to be used for streaming :return: Language model instance """ return ChatLiteLLM( temperature=temperature, model=model, streaming=streaming, verbose=True, callbacks=callbacks, openai_api_key=self.openai_api_key, ) def _create_prompt_template(self): messages = [ HumanMessagePromptTemplate.from_template("{question}"), ] CHAT_PROMPT = ChatPromptTemplate.from_messages(messages) return CHAT_PROMPT def generate_answer( self, chat_id: UUID, question: ChatQuestion ) -> GetChatHistoryOutput: transformed_history = format_chat_history(get_chat_history(self.chat_id)) prompt_content = ( self.prompt_to_use.content if self.prompt_to_use else SYSTEM_MESSAGE ) messages = format_history_to_openai_mesages( transformed_history, prompt_content, question.question ) answering_llm = self._create_llm( model=self.model, streaming=False, callbacks=self.callbacks ) model_prediction = answering_llm.predict_messages(messages) answer = model_prediction.content new_chat = update_chat_history( CreateChatHistory( **{ "chat_id": chat_id, "user_message": question.question, "assistant": answer, "brain_id": None, "prompt_id": self.prompt_to_use_id, } ) ) return GetChatHistoryOutput( **{ "chat_id": chat_id, "user_message": question.question, "assistant": answer, "message_time": new_chat.message_time, "prompt_title": self.prompt_to_use.title if self.prompt_to_use else None, "brain_name": None, "message_id": new_chat.message_id, } ) async def generate_stream( self, chat_id: UUID, question: ChatQuestion ) -> AsyncIterable: callback = AsyncIteratorCallbackHandler() self.callbacks = [callback] transformed_history = format_chat_history(get_chat_history(self.chat_id)) prompt_content = ( self.prompt_to_use.content if self.prompt_to_use else SYSTEM_MESSAGE ) messages = format_history_to_openai_mesages( transformed_history, prompt_content, question.question ) answering_llm = self._create_llm( model=self.model, streaming=True, callbacks=self.callbacks ) CHAT_PROMPT = ChatPromptTemplate.from_messages(messages) headlessChain = LLMChain(llm=answering_llm, prompt=CHAT_PROMPT) response_tokens = [] async def wrap_done(fn: Awaitable, event: asyncio.Event): try: await fn except Exception as e: logger.error(f"Caught exception: {e}") finally: event.set() run = asyncio.create_task( wrap_done( headlessChain.acall({}), callback.done, ), ) streamed_chat_history = update_chat_history( CreateChatHistory( **{ "chat_id": chat_id, "user_message": question.question, "assistant": "", "brain_id": None, "prompt_id": self.prompt_to_use_id, } ) ) streamed_chat_history = GetChatHistoryOutput( **{ "chat_id": str(chat_id), "message_id": streamed_chat_history.message_id, "message_time": streamed_chat_history.message_time, "user_message": question.question, "assistant": "", "prompt_title": self.prompt_to_use.title if self.prompt_to_use else None, "brain_name": None, } ) async for token in callback.aiter(): logger.info("Token: %s", token) response_tokens.append(token) streamed_chat_history.assistant = token yield f"data: {json.dumps(streamed_chat_history.dict())}" await run assistant = "".join(response_tokens) update_message_by_id( message_id=str(streamed_chat_history.message_id), user_message=question.question, assistant=assistant, ) class Config: arbitrary_types_allowed = True