import os from typing import Any, List, Optional from uuid import UUID from logger import get_logger from models.settings import CommonsDep, common_dependencies from models.users import User from pydantic import BaseModel from utils.vectors import get_unique_files_from_vector_ids logger = get_logger(__name__) class Brain(BaseModel): id: Optional[UUID] = None name: Optional[str] = "Default brain" status: Optional[str] = "public" model: Optional[str] = "gpt-3.5-turbo-0613" temperature: Optional[float] = 0.0 max_tokens: Optional[int] = 256 max_brain_size: Optional[int] = int(os.getenv("MAX_BRAIN_SIZE", 52428800)) files: List[Any] = [] class Config: arbitrary_types_allowed = True @property def commons(self) -> CommonsDep: return common_dependencies() @property def brain_size(self): self.get_unique_brain_files() current_brain_size = sum(float(doc["size"]) for doc in self.files) return current_brain_size @property def remaining_brain_size(self): return ( float(self.max_brain_size) # pyright: ignore reportPrivateUsage=none - self.brain_size # pyright: ignore reportPrivateUsage=none ) @classmethod def create(cls, *args, **kwargs): commons = common_dependencies() return cls( commons=commons, *args, **kwargs # pyright: ignore reportPrivateUsage=none ) # pyright: ignore reportPrivateUsage=none def get_user_brains(self, user_id): response = ( self.commons["supabase"] .from_("brains_users") .select("id:brain_id, brains (id: brain_id, name)") .filter("user_id", "eq", user_id) .execute() ) return [item["brains"] for item in response.data] def get_brain_for_user(self, user_id): response = ( self.commons["supabase"] .from_("brains_users") .select("id:brain_id, rights, brains (id: brain_id, name)") .filter("user_id", "eq", user_id) .filter("brain_id", "eq", self.id) .execute() ) if len(response.data) == 0: return None return response.data[0] def get_brain_details(self): response = ( self.commons["supabase"] .from_("brains") .select("id:brain_id, name, *") .filter("brain_id", "eq", self.id) .execute() ) return response.data def delete_brain(self, user_id): results = ( self.commons["supabase"] .table("brains_users") .select("*") .match({"brain_id": self.id, "user_id": user_id, "rights": "Owner"}) .execute() ) if len(results.data) == 0: return {"message": "You are not the owner of this brain."} else: results = ( self.commons["supabase"] .table("brains_vectors") .delete() .match({"brain_id": self.id}) .execute() ) results = ( self.commons["supabase"] .table("brains_users") .delete() .match({"brain_id": self.id}) .execute() ) results = ( self.commons["supabase"] .table("brains") .delete() .match({"brain_id": self.id}) .execute() ) def create_brain(self): commons = common_dependencies() response = ( commons["supabase"].table("brains").insert({"name": self.name}).execute() ) self.id = response.data[0]["brain_id"] return response.data def create_brain_user(self, user_id: UUID, rights, default_brain): commons = common_dependencies() response = ( commons["supabase"] .table("brains_users") .insert( { "brain_id": str(self.id), "user_id": str(user_id), "rights": rights, "default_brain": default_brain, } ) .execute() ) return response.data def create_brain_vector(self, vector_id, file_sha1): response = ( self.commons["supabase"] .table("brains_vectors") .insert( { "brain_id": str(self.id), "vector_id": str(vector_id), "file_sha1": file_sha1, } ) .execute() ) return response.data def get_vector_ids_from_file_sha1(self, file_sha1: str): # move to vectors class vectorsResponse = ( self.commons["supabase"] .table("vectors") .select("id") .filter("metadata->>file_sha1", "eq", file_sha1) .execute() ) return vectorsResponse.data def update_brain_fields(self): self.commons["supabase"].table("brains").update({"name": self.name}).match( {"brain_id": self.id} ).execute() def update_brain_with_file(self, file_sha1: str): # not used vector_ids = self.get_vector_ids_from_file_sha1(file_sha1) for vector_id in vector_ids: self.create_brain_vector(vector_id, file_sha1) def get_unique_brain_files(self): """ Retrieve unique brain data (i.e. uploaded files and crawled websites). """ response = ( self.commons["supabase"] .from_("brains_vectors") .select("vector_id") .filter("brain_id", "eq", self.id) .execute() ) vector_ids = [item["vector_id"] for item in response.data] if len(vector_ids) == 0: return [] self.files = get_unique_files_from_vector_ids(vector_ids) return self.files def delete_file_from_brain(self, file_name: str): # First, get the vector_ids associated with the file_name vector_response = ( self.commons["supabase"] .table("vectors") .select("id") .filter("metadata->>file_name", "eq", file_name) .execute() ) vector_ids = [item["id"] for item in vector_response.data] # For each vector_id, delete the corresponding entry from the 'brains_vectors' table for vector_id in vector_ids: self.commons["supabase"].table("brains_vectors").delete().filter( "vector_id", "eq", vector_id ).filter("brain_id", "eq", self.id).execute() # Check if the vector is still associated with any other brains associated_brains_response = ( self.commons["supabase"] .table("brains_vectors") .select("brain_id") .filter("vector_id", "eq", vector_id) .execute() ) associated_brains = [ item["brain_id"] for item in associated_brains_response.data ] # If the vector is not associated with any other brains, delete it from 'vectors' table if not associated_brains: self.commons["supabase"].table("vectors").delete().filter( "id", "eq", vector_id ).execute() return {"message": f"File {file_name} in brain {self.id} has been deleted."} def get_default_user_brain(user: User): commons = common_dependencies() response = ( commons["supabase"] .from_("brains_users") .select("brain_id") .filter("user_id", "eq", user.id) .filter("default_brain", "eq", True) .execute() ) logger.info("Default brain response:", response.data) default_brain_id = response.data[0]["brain_id"] if response.data else None logger.info(f"Default brain id: {default_brain_id}") if default_brain_id: brain_response = ( commons["supabase"] .from_("brains") .select("id:brain_id, name, *") .filter("brain_id", "eq", default_brain_id) .execute() ) return brain_response.data[0] if brain_response.data else None return None