from concurrent.futures import ThreadPoolExecutor from typing import List from uuid import UUID from langchain.embeddings.openai import OpenAIEmbeddings from logger import get_logger from models.settings import get_documents_vector_store, get_embeddings, get_supabase_db from pydantic import BaseModel logger = get_logger(__name__) class Neurons(BaseModel): def create_vector(self, doc, user_openai_api_key=None): documents_vector_store = get_documents_vector_store() logger.info("Creating vector for document") logger.info(f"Document: {doc}") if user_openai_api_key: documents_vector_store._embedding = OpenAIEmbeddings( openai_api_key=user_openai_api_key ) # pyright: ignore reportPrivateUsage=none try: sids = documents_vector_store.add_documents([doc]) if sids and len(sids) > 0: return sids except Exception as e: logger.error(f"Error creating vector for document {e}") def create_embedding(self, content): embeddings = get_embeddings() return embeddings.embed_query(content) def similarity_search(self, query, table="match_summaries", top_k=6, threshold=0.5): query_embedding = self.create_embedding(query) supabase_db = get_supabase_db() summaries = supabase_db.similarity_search( query_embedding, table, top_k, threshold ) return summaries.data def error_callback(exception): print("An exception occurred:", exception) def process_batch(batch_ids: List[str]): supabase_db = get_supabase_db() try: if len(batch_ids) == 1: return (supabase_db.get_vectors_by_batch(UUID(batch_ids[0]))).data else: return (supabase_db.get_vectors_in_batch(batch_ids)).data except Exception as e: logger.error("Error retrieving batched vectors", e) def get_unique_files_from_vector_ids(vectors_ids: List[str]): # Move into Vectors class """ Retrieve unique user data vectors. """ # constants BATCH_SIZE = 5 with ThreadPoolExecutor() as executor: futures = [] for i in range(0, len(vectors_ids), BATCH_SIZE): batch_ids = vectors_ids[i : i + BATCH_SIZE] future = executor.submit(process_batch, batch_ids) futures.append(future) # Retrieve the results vectors_responses = [future.result() for future in futures] documents = [item for sublist in vectors_responses for item in sublist] unique_files = [dict(t) for t in set(tuple(d.items()) for d in documents)] return unique_files