from operator import itemgetter from typing import Optional from uuid import UUID from langchain.chains import ConversationalRetrievalChain from langchain.embeddings.ollama import OllamaEmbeddings from langchain.llms.base import BaseLLM from langchain.memory import ConversationBufferMemory from langchain.prompts import HumanMessagePromptTemplate from langchain.schema import format_document from langchain_community.chat_models import ChatLiteLLM from langchain_core.messages import SystemMessage, get_buffer_string from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate, PromptTemplate from langchain_core.runnables import RunnableLambda, RunnablePassthrough from langchain_openai import OpenAIEmbeddings from llm.utils.get_prompt_to_use import get_prompt_to_use from logger import get_logger from models import BrainSettings # Importing settings related to the 'brain' from modules.brain.service.brain_service import BrainService from modules.chat.service.chat_service import ChatService from pydantic import BaseModel, ConfigDict from pydantic_settings import BaseSettings from supabase.client import Client, create_client from vectorstore.supabase import CustomSupabaseVectorStore logger = get_logger(__name__) # First step is to create the Rephrasing Prompt _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language. Chat History: {chat_history} Follow Up Input: {question} Standalone question:""" CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template) # Next is the answering prompt template_answer = """ Context: {context} User Instructions to follow when answering, default to none: {custom_instructions} User Question: {question} Answer: """ ANSWER_PROMPT = ChatPromptTemplate.from_messages( [ SystemMessage( content=( "When answering use markdown or any other techniques to display the content in a nice and aerated way. Use the following pieces of context from files provided by the user to answer the users question in the same language as the user question. Your name is Quivr. You're a helpful assistant. If you don't know the answer with the context provided from the files, just say that you don't know, don't try to make up an answer." ) ), HumanMessagePromptTemplate.from_template(template_answer), ] ) # How we format documents DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template( template="File: {file_name} Content: {page_content}" ) def is_valid_uuid(uuid_to_test, version=4): try: uuid_obj = UUID(uuid_to_test, version=version) except ValueError: return False return str(uuid_obj) == uuid_to_test brain_service = BrainService() chat_service = ChatService() class QuivrRAG(BaseModel): """ Quivr implementation of the RAGInterface. """ model_config = ConfigDict(arbitrary_types_allowed=True) # Instantiate settings brain_settings: BaseSettings = BrainSettings() # Default class attributes model: str = None # pyright: ignore reportPrivateUsage=none temperature: float = 0.1 chat_id: str = None # pyright: ignore reportPrivateUsage=none brain_id: str = None # pyright: ignore reportPrivateUsage=none max_tokens: int = 2000 # Output length max_input: int = 2000 streaming: bool = False @property def embeddings(self): if self.brain_settings.ollama_api_base_url: return OllamaEmbeddings( base_url=self.brain_settings.ollama_api_base_url ) # pyright: ignore reportPrivateUsage=none else: return OpenAIEmbeddings() def prompt_to_use(self): if self.brain_id and is_valid_uuid(self.brain_id): return get_prompt_to_use(UUID(self.brain_id), self.prompt_id) else: return None supabase_client: Optional[Client] = None vector_store: Optional[CustomSupabaseVectorStore] = None qa: Optional[ConversationalRetrievalChain] = None prompt_id: Optional[UUID] = None def __init__( self, model: str, brain_id: str, chat_id: str, streaming: bool = False, prompt_id: Optional[UUID] = None, max_tokens: int = 2000, max_input: int = 2000, **kwargs, ): super().__init__( model=model, brain_id=brain_id, chat_id=chat_id, streaming=streaming, max_tokens=max_tokens, max_input=max_input, **kwargs, ) self.supabase_client = self._create_supabase_client() self.vector_store = self._create_vector_store() self.prompt_id = prompt_id self.max_tokens = max_tokens self.max_input = max_input self.model = model self.brain_id = brain_id self.chat_id = chat_id self.streaming = streaming logger.info(f"QuivrRAG initialized with model {model} and brain {brain_id}") logger.info("Max input length: " + str(self.max_input)) def _create_supabase_client(self) -> Client: return create_client( self.brain_settings.supabase_url, self.brain_settings.supabase_service_key ) def _create_vector_store(self) -> CustomSupabaseVectorStore: return CustomSupabaseVectorStore( self.supabase_client, self.embeddings, table_name="vectors", brain_id=self.brain_id, max_input=self.max_input, ) def _create_llm( self, callbacks, model, streaming=False, temperature=0, ) -> BaseLLM: """ Create a LLM with the given parameters """ if streaming and callbacks is None: raise ValueError( "Callbacks must be provided when using streaming language models" ) api_base = None if self.brain_settings.ollama_api_base_url and model.startswith("ollama"): api_base = self.brain_settings.ollama_api_base_url return ChatLiteLLM( temperature=temperature, max_tokens=self.max_tokens, model=model, streaming=streaming, verbose=False, callbacks=callbacks, api_base=api_base, ) def _combine_documents( self, docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n" ): doc_strings = [format_document(doc[0], document_prompt) for doc in docs] return document_separator.join(doc_strings) def get_retriever(self): return self.vector_store.as_retriever() def get_chain(self): retriever_doc = self.get_retriever() memory = ConversationBufferMemory( return_messages=True, output_key="answer", input_key="question" ) loaded_memory = RunnablePassthrough.assign( chat_history=RunnableLambda(memory.load_memory_variables) | itemgetter("history"), ) standalone_question = { "standalone_question": { "question": lambda x: x["question"], "chat_history": lambda x: get_buffer_string(x["chat_history"]), } | CONDENSE_QUESTION_PROMPT | ChatLiteLLM(temperature=0, model=self.model) | StrOutputParser(), } prompt_custom_user = self.prompt_to_use() prompt_to_use = "None" if prompt_custom_user: prompt_to_use = prompt_custom_user.content # Now we retrieve the documents retrieved_documents = { "docs": itemgetter("standalone_question") | retriever_doc, "question": lambda x: x["standalone_question"], "custom_instructions": lambda x: prompt_to_use, } final_inputs = { "context": lambda x: self._combine_documents(x["docs"]), "question": itemgetter("question"), "custom_instructions": itemgetter("custom_instructions"), } # And finally, we do the part that returns the answers answer = { "answer": final_inputs | ANSWER_PROMPT | ChatLiteLLM(max_tokens=self.max_tokens, model=self.model), "docs": itemgetter("docs"), } return loaded_memory | standalone_question | retrieved_documents | answer