quivr/backend/modules/brain/integrations/Self/Brain.py
Stan Girard c287fceb5b
feat: self-reflect brain (#2610)
This pull request adds the SelfBrain integration to the list of
available brain integrations.
2024-05-22 08:51:15 -07:00

488 lines
16 KiB
Python

import json
from typing import AsyncIterable, List
from uuid import UUID
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import (
ChatPromptTemplate,
MessagesPlaceholder,
PromptTemplate,
)
from langchain_core.pydantic_v1 import BaseModel as BaseModelV1
from langchain_core.pydantic_v1 import Field as FieldV1
from langchain_openai import ChatOpenAI
from langgraph.graph import END, StateGraph
from logger import get_logger
from modules.brain.knowledge_brain_qa import KnowledgeBrainQA
from modules.chat.dto.chats import ChatQuestion
from modules.chat.dto.outputs import GetChatHistoryOutput
from modules.chat.service.chat_service import ChatService
from typing_extensions import TypedDict
# Post-processing
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
class GraphState(TypedDict):
"""
Represents the state of our graph.
Attributes:
question: question
generation: LLM generation
documents: list of documents
"""
question: str
generation: str
documents: List[str]
# Data model
class GradeDocuments(BaseModelV1):
"""Binary score for relevance check on retrieved documents."""
binary_score: str = FieldV1(
description="Documents are relevant to the question, 'yes' or 'no'"
)
class GradeHallucinations(BaseModelV1):
"""Binary score for hallucination present in generation answer."""
binary_score: str = FieldV1(
description="Answer is grounded in the facts, 'yes' or 'no'"
)
# Data model
class GradeAnswer(BaseModelV1):
"""Binary score to assess answer addresses question."""
binary_score: str = FieldV1(
description="Answer addresses the question, 'yes' or 'no'"
)
logger = get_logger(__name__)
chat_service = ChatService()
class SelfBrain(KnowledgeBrainQA):
"""
GPT4Brain integrates with GPT-4 to provide real-time answers and supports various tools to enhance its capabilities.
Available Tools:
- WebSearchTool: Performs web searches to find relevant information.
- ImageGeneratorTool: Generates images based on textual descriptions.
- URLReaderTool: Reads and summarizes content from URLs.
- EmailSenderTool: Sends emails with specified content.
Use Cases:
- WebSearchTool can be used to find the latest news articles on a specific topic or to gather information from various websites.
- ImageGeneratorTool is useful for creating visual content based on textual prompts, such as generating a company logo based on a description.
- URLReaderTool can be used to summarize articles or web pages, making it easier to quickly understand the content without reading the entire text.
- EmailSenderTool enables automated email sending, such as sending a summary of a meeting's minutes to all participants.
"""
max_input: int = 10000
def __init__(
self,
**kwargs,
):
super().__init__(
**kwargs,
)
def calculate_pricing(self):
return 3
def retrieval_grade(self):
llm = ChatOpenAI(model="gpt-4o", temperature=0)
structured_llm_grader = llm.with_structured_output(GradeDocuments)
# Prompt
system = """You are a grader assessing relevance of a retrieved document to a user question. \n
It does not need to be a stringent test. The goal is to filter out erroneous retrievals. \n
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \n
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question."""
grade_prompt = ChatPromptTemplate.from_messages(
[
("system", system),
(
"human",
"Retrieved document: \n\n {document} \n\n User question: {question}",
),
]
)
retrieval_grader = grade_prompt | structured_llm_grader
return retrieval_grader
def generation_rag(self):
# Prompt
human_prompt = """You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.
Question: {question}
Context: {context}
Answer:
"""
prompt_human = PromptTemplate.from_template(human_prompt)
# LLM
llm = ChatOpenAI(model="gpt-4o", temperature=0)
# Chain
rag_chain = prompt_human | llm | StrOutputParser()
return rag_chain
def hallucination_grader(self):
# LLM with function call
llm = ChatOpenAI(model="gpt-4o", temperature=0)
structured_llm_grader = llm.with_structured_output(GradeHallucinations)
# Prompt
system = """You are a grader assessing whether an LLM generation is grounded in / supported by a set of retrieved facts. \n
Give a binary score 'yes' or 'no'. 'Yes' means that the answer is grounded in / supported by the set of facts."""
hallucination_prompt = ChatPromptTemplate.from_messages(
[
("system", system),
(
"human",
"Set of facts: \n\n {documents} \n\n LLM generation: {generation}",
),
]
)
hallucination_grader = hallucination_prompt | structured_llm_grader
return hallucination_grader
def answer_grader(self):
# LLM with function call
llm = ChatOpenAI(model="gpt-4o", temperature=0)
structured_llm_grader = llm.with_structured_output(GradeAnswer)
# Prompt
system = """You are a grader assessing whether an answer addresses / resolves a question \n
Give a binary score 'yes' or 'no'. Yes' means that the answer resolves the question."""
answer_prompt = ChatPromptTemplate.from_messages(
[
("system", system),
(
"human",
"User question: \n\n {question} \n\n LLM generation: {generation}",
),
]
)
answer_grader = answer_prompt | structured_llm_grader
return answer_grader
def question_rewriter(self):
# LLM
llm = ChatOpenAI(model="gpt-4o", temperature=0)
# Prompt
system = """You a question re-writer that converts an input question to a better version that is optimized \n
for vectorstore retrieval. Look at the input and try to reason about the underlying semantic intent / meaning."""
re_write_prompt = ChatPromptTemplate.from_messages(
[
("system", system),
(
"human",
"Here is the initial question: \n\n {question} \n Formulate an improved question.",
),
]
)
question_rewriter = re_write_prompt | llm | StrOutputParser()
return question_rewriter
def get_chain(self):
graph = self.create_graph()
return graph
def create_graph(self):
workflow = StateGraph(GraphState)
# Define the nodes
workflow.add_node("retrieve", self.retrieve) # retrieve
workflow.add_node("grade_documents", self.grade_documents) # grade documents
workflow.add_node("generate", self.generate) # generatae
workflow.add_node("transform_query", self.transform_query) # transform_query
# Build graph
workflow.set_entry_point("retrieve")
workflow.add_edge("retrieve", "grade_documents")
workflow.add_conditional_edges(
"grade_documents",
self.decide_to_generate,
{
"transform_query": "transform_query",
"generate": "generate",
},
)
workflow.add_edge("transform_query", "retrieve")
workflow.add_conditional_edges(
"generate",
self.grade_generation_v_documents_and_question,
{
"not supported": "generate",
"useful": END,
"not useful": "transform_query",
},
)
# Compile
app = workflow.compile()
return app
def retrieve(self, state):
"""
Retrieve documents
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, documents, that contains retrieved documents
"""
print("---RETRIEVE---")
logger.info("Retrieving documents")
question = state["question"]
logger.info(f"Question: {question}")
# Retrieval
retriever = self.knowledge_qa.get_retriever()
documents = retriever.get_relevant_documents(question)
return {"documents": documents, "question": question}
def generate(self, state):
"""
Generate answer
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, generation, that contains LLM generation
"""
print("---GENERATE---")
question = state["question"]
documents = state["documents"]
formatted_docs = format_docs(documents)
# RAG generation
generation = self.generation_rag().invoke(
{"context": formatted_docs, "question": question}
)
return {"documents": documents, "question": question, "generation": generation}
def grade_documents(self, state):
"""
Determines whether the retrieved documents are relevant to the question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates documents key with only filtered relevant documents
"""
print("---CHECK DOCUMENT RELEVANCE TO QUESTION---")
question = state["question"]
documents = state["documents"]
# Score each doc
filtered_docs = []
for d in documents:
score = self.retrieval_grade().invoke(
{"question": question, "document": d.page_content}
)
grade = score.binary_score
if grade == "yes":
print("---GRADE: DOCUMENT RELEVANT---")
filtered_docs.append(d)
else:
print("---GRADE: DOCUMENT NOT RELEVANT---")
continue
return {"documents": filtered_docs, "question": question}
def transform_query(self, state):
"""
Transform the query to produce a better question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates question key with a re-phrased question
"""
print("---TRANSFORM QUERY---")
question = state["question"]
documents = state["documents"]
# Re-write question
better_question = self.question_rewriter().invoke({"question": question})
return {"documents": documents, "question": better_question}
def decide_to_generate(self, state):
"""
Determines whether to generate an answer, or re-generate a question.
Args:
state (dict): The current graph state
Returns:
str: Binary decision for next node to call
"""
print("---ASSESS GRADED DOCUMENTS---")
question = state["question"]
filtered_documents = state["documents"]
if not filtered_documents:
# All documents have been filtered check_relevance
# We will re-generate a new query
print(
"---DECISION: ALL DOCUMENTS ARE NOT RELEVANT TO QUESTION, TRANSFORM QUERY---"
)
return "transform_query"
else:
# We have relevant documents, so generate answer
print("---DECISION: GENERATE---")
return "generate"
def grade_generation_v_documents_and_question(self, state):
"""
Determines whether the generation is grounded in the document and answers question.
Args:
state (dict): The current graph state
Returns:
str: Decision for next node to call
"""
print("---CHECK HALLUCINATIONS---")
question = state["question"]
documents = state["documents"]
generation = state["generation"]
score = self.hallucination_grader().invoke(
{"documents": documents, "generation": generation}
)
grade = score.binary_score
# Check hallucination
if grade == "yes":
print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---")
# Check question-answering
print("---GRADE GENERATION vs QUESTION---")
score = self.answer_grader().invoke(
{"question": question, "generation": generation}
)
grade = score.binary_score
if grade == "yes":
print("---DECISION: GENERATION ADDRESSES QUESTION---")
return "useful"
else:
print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---")
return "not useful"
else:
print("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---")
return "not supported"
async def generate_stream(
self, chat_id: UUID, question: ChatQuestion, save_answer: bool = True
) -> AsyncIterable:
conversational_qa_chain = self.get_chain()
transformed_history, streamed_chat_history = (
self.initialize_streamed_chat_history(chat_id, question)
)
filtered_history = self.filter_history(transformed_history, 40, 2000)
response_tokens = []
config = {"metadata": {"conversation_id": str(chat_id)}}
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are GPT-4 powered by Quivr. You are an assistant. {custom_personality}",
),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{question}"),
]
)
prompt_formated = prompt.format_messages(
chat_history=filtered_history,
question=question.question,
custom_personality=(
self.prompt_to_use.content if self.prompt_to_use else None
),
)
async for event in conversational_qa_chain.astream(
{"question": question.question}, config=config
):
for key, value in event.items():
if "generation" in value and value["generation"] != "":
response_tokens.append(value["generation"])
streamed_chat_history.assistant = value["generation"]
yield f"data: {json.dumps(streamed_chat_history.dict())}"
self.save_answer(question, response_tokens, streamed_chat_history, save_answer)
def generate_answer(
self, chat_id: UUID, question: ChatQuestion, save_answer: bool = True
) -> GetChatHistoryOutput:
conversational_qa_chain = self.get_chain()
transformed_history, _ = self.initialize_streamed_chat_history(
chat_id, question
)
filtered_history = self.filter_history(transformed_history, 40, 2000)
config = {"metadata": {"conversation_id": str(chat_id)}}
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are GPT-4 powered by Quivr. You are an assistant. {custom_personality}",
),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{question}"),
]
)
prompt_formated = prompt.format_messages(
chat_history=filtered_history,
question=question.question,
custom_personality=(
self.prompt_to_use.content if self.prompt_to_use else None
),
)
model_response = conversational_qa_chain.invoke(
{"messages": prompt_formated},
config=config,
)
answer = model_response["messages"][-1].content
return self.save_non_streaming_answer(
chat_id=chat_id, question=question, answer=answer, metadata={}
)