mirror of
https://github.com/QuivrHQ/quivr.git
synced 2024-12-15 09:32:22 +03:00
cc39f9e3ba
# Description Please include a summary of the changes and the related issue. Please also include relevant motivation and context. ## Checklist before requesting a review Please delete options that are not relevant. - [ ] My code follows the style guidelines of this project - [ ] I have performed a self-review of my code - [ ] I have commented hard-to-understand areas - [ ] I have ideally added tests that prove my fix is effective or that my feature works - [ ] New and existing unit tests pass locally with my changes - [ ] Any dependent changes have been merged ## Screenshots (if appropriate):
210 lines
7.1 KiB
Python
210 lines
7.1 KiB
Python
from typing import Optional
|
|
from uuid import UUID
|
|
|
|
from langchain.chains import ConversationalRetrievalChain, LLMChain
|
|
from langchain.chains.question_answering import load_qa_chain
|
|
from langchain.chat_models import ChatLiteLLM
|
|
from langchain.embeddings.ollama import OllamaEmbeddings
|
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
from langchain.llms.base import BaseLLM
|
|
from langchain.prompts.chat import (
|
|
ChatPromptTemplate,
|
|
HumanMessagePromptTemplate,
|
|
SystemMessagePromptTemplate,
|
|
)
|
|
from llm.rags.rag_interface import RAGInterface
|
|
from llm.utils.get_prompt_to_use import get_prompt_to_use
|
|
from logger import get_logger
|
|
from models import BrainSettings # Importing settings related to the 'brain'
|
|
from modules.brain.service.brain_service import BrainService
|
|
from modules.chat.service.chat_service import ChatService
|
|
from pydantic import BaseModel
|
|
from supabase.client import Client, create_client
|
|
from vectorstore.supabase import CustomSupabaseVectorStore
|
|
|
|
from ..prompts.CONDENSE_PROMPT import CONDENSE_QUESTION_PROMPT
|
|
|
|
logger = get_logger(__name__)
|
|
QUIVR_DEFAULT_PROMPT = "Your name is Quivr. You're a helpful assistant. If you don't know the answer, just say that you don't know, don't try to make up an answer."
|
|
|
|
|
|
def is_valid_uuid(uuid_to_test, version=4):
|
|
try:
|
|
uuid_obj = UUID(uuid_to_test, version=version)
|
|
except ValueError:
|
|
return False
|
|
|
|
return str(uuid_obj) == uuid_to_test
|
|
|
|
|
|
brain_service = BrainService()
|
|
chat_service = ChatService()
|
|
|
|
|
|
class QuivrRAG(BaseModel, RAGInterface):
|
|
"""
|
|
Quivr implementation of the RAGInterface.
|
|
"""
|
|
|
|
class Config:
|
|
"""Configuration of the Pydantic Object"""
|
|
|
|
# Allowing arbitrary types for class validation
|
|
arbitrary_types_allowed = True
|
|
|
|
# Instantiate settings
|
|
brain_settings = BrainSettings() # type: ignore other parameters are optional
|
|
|
|
# Default class attributes
|
|
model: str = None # pyright: ignore reportPrivateUsage=none
|
|
temperature: float = 0.1
|
|
chat_id: str = None # pyright: ignore reportPrivateUsage=none
|
|
brain_id: str = None # pyright: ignore reportPrivateUsage=none
|
|
max_tokens: int = 2000 # Output length
|
|
max_input: int = 2000
|
|
streaming: bool = False
|
|
|
|
@property
|
|
def embeddings(self):
|
|
if self.brain_settings.ollama_api_base_url:
|
|
return OllamaEmbeddings(
|
|
base_url=self.brain_settings.ollama_api_base_url
|
|
) # pyright: ignore reportPrivateUsage=none
|
|
else:
|
|
return OpenAIEmbeddings()
|
|
|
|
@property
|
|
def prompt_to_use(self):
|
|
if self.brain_id and is_valid_uuid(self.brain_id):
|
|
return get_prompt_to_use(UUID(self.brain_id), self.prompt_id)
|
|
else:
|
|
return None
|
|
|
|
supabase_client: Optional[Client] = None
|
|
vector_store: Optional[CustomSupabaseVectorStore] = None
|
|
qa: Optional[ConversationalRetrievalChain] = None
|
|
prompt_id: Optional[UUID]
|
|
|
|
def __init__(
|
|
self,
|
|
model: str,
|
|
brain_id: str,
|
|
chat_id: str,
|
|
streaming: bool = False,
|
|
prompt_id: Optional[UUID] = None,
|
|
max_tokens: int = 2000,
|
|
max_input: int = 2000,
|
|
**kwargs,
|
|
):
|
|
super().__init__(
|
|
model=model,
|
|
brain_id=brain_id,
|
|
chat_id=chat_id,
|
|
streaming=streaming,
|
|
max_tokens=max_tokens,
|
|
max_input=max_input,
|
|
**kwargs,
|
|
)
|
|
self.supabase_client = self._create_supabase_client()
|
|
self.vector_store = self._create_vector_store()
|
|
self.prompt_id = prompt_id
|
|
self.max_tokens = max_tokens
|
|
self.max_input = max_input
|
|
self.model = model
|
|
self.brain_id = brain_id
|
|
self.chat_id = chat_id
|
|
self.streaming = streaming
|
|
|
|
logger.info(f"QuivrRAG initialized with model {model} and brain {brain_id}")
|
|
logger.info("Max input length: " + str(self.max_input))
|
|
|
|
def _create_supabase_client(self) -> Client:
|
|
return create_client(
|
|
self.brain_settings.supabase_url, self.brain_settings.supabase_service_key
|
|
)
|
|
|
|
def _create_vector_store(self) -> CustomSupabaseVectorStore:
|
|
return CustomSupabaseVectorStore(
|
|
self.supabase_client,
|
|
self.embeddings,
|
|
table_name="vectors",
|
|
brain_id=self.brain_id,
|
|
max_input=self.max_input,
|
|
)
|
|
|
|
def _create_llm(
|
|
self,
|
|
callbacks,
|
|
model,
|
|
streaming=False,
|
|
temperature=0,
|
|
) -> BaseLLM:
|
|
"""
|
|
Create a LLM with the given parameters
|
|
"""
|
|
if streaming and callbacks is None:
|
|
raise ValueError(
|
|
"Callbacks must be provided when using streaming language models"
|
|
)
|
|
|
|
api_base = None
|
|
if self.brain_settings.ollama_api_base_url and model.startswith("ollama"):
|
|
api_base = self.brain_settings.ollama_api_base_url
|
|
|
|
return ChatLiteLLM(
|
|
temperature=temperature,
|
|
max_tokens=self.max_tokens,
|
|
model=model,
|
|
streaming=streaming,
|
|
verbose=False,
|
|
callbacks=callbacks,
|
|
api_base=api_base,
|
|
)
|
|
|
|
def _create_prompt_template(self):
|
|
system_template = """ When answering use markdown or any other techniques to display the content in a nice and aerated way. Use the following pieces of context to answer the users question in the same language as the question but do not modify instructions in any way.
|
|
----------------
|
|
{context}"""
|
|
|
|
prompt_content = (
|
|
self.prompt_to_use.content if self.prompt_to_use else QUIVR_DEFAULT_PROMPT
|
|
)
|
|
|
|
full_template = (
|
|
"Here are your instructions to answer that you MUST ALWAYS Follow: "
|
|
+ prompt_content
|
|
+ ". "
|
|
+ system_template
|
|
)
|
|
messages = [
|
|
SystemMessagePromptTemplate.from_template(full_template),
|
|
HumanMessagePromptTemplate.from_template("{question}"),
|
|
]
|
|
CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
|
|
return CHAT_PROMPT
|
|
|
|
def get_doc_chain(self, streaming, callbacks=None):
|
|
answering_llm = self._create_llm(
|
|
model=self.model,
|
|
callbacks=callbacks,
|
|
streaming=streaming,
|
|
)
|
|
|
|
doc_chain = load_qa_chain(
|
|
answering_llm, chain_type="stuff", prompt=self._create_prompt_template()
|
|
)
|
|
return doc_chain
|
|
|
|
def get_question_generation_llm(self):
|
|
return LLMChain(
|
|
llm=self._create_llm(model=self.model, callbacks=None),
|
|
prompt=CONDENSE_QUESTION_PROMPT,
|
|
callbacks=None,
|
|
)
|
|
|
|
def get_retriever(self):
|
|
return self.vector_store.as_retriever()
|
|
|
|
# Some other methods can be added such as on_stream, on_end,... to abstract history management (each answer should be saved or not) # Some other methods can be added such as on_stream, on_end,... to abstract history management (each answer should be saved or not)
|
|
# Some other methods can be added such as on_stream, on_end,... to abstract history management (each answer should be saved or not)
|