mirror of
https://github.com/QuivrHQ/quivr.git
synced 2024-12-15 01:21:48 +03:00
185 lines
6.4 KiB
Python
185 lines
6.4 KiB
Python
from fastapi import FastAPI, UploadFile, File, HTTPException
|
|
import os
|
|
from pydantic import BaseModel
|
|
from typing import List, Tuple
|
|
from supabase import create_client, Client
|
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
from langchain.memory import ConversationBufferMemory
|
|
from langchain.vectorstores import SupabaseVectorStore
|
|
from langchain.chains import ConversationalRetrievalChain
|
|
from langchain.llms import OpenAI
|
|
from fastapi.openapi.utils import get_openapi
|
|
from tempfile import SpooledTemporaryFile
|
|
import shutil
|
|
import LANGUAGE_PROMPT
|
|
import pypandoc
|
|
|
|
from parsers.common import file_already_exists
|
|
from parsers.txt import process_txt
|
|
from parsers.csv import process_csv
|
|
from parsers.docx import process_docx
|
|
from parsers.pdf import process_pdf
|
|
from parsers.notebook import process_ipnyb
|
|
from parsers.markdown import process_markdown
|
|
from parsers.powerpoint import process_powerpoint
|
|
from parsers.html import process_html
|
|
from parsers.epub import process_epub
|
|
from parsers.audio import process_audio
|
|
from crawl.crawler import CrawlWebsite
|
|
|
|
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
app = FastAPI()
|
|
|
|
origins = [
|
|
"http://localhost",
|
|
"http://localhost:3000",
|
|
"http://localhost:8080",
|
|
]
|
|
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=origins,
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
|
|
@app.on_event("startup")
|
|
async def startup_event():
|
|
pypandoc.download_pandoc()
|
|
|
|
|
|
supabase_url = os.environ.get("SUPABASE_URL")
|
|
supabase_key = os.environ.get("SUPABASE_SERVICE_KEY")
|
|
openai_api_key = os.environ.get("OPENAI_API_KEY")
|
|
anthropic_api_key = ""
|
|
supabase: Client = create_client(supabase_url, supabase_key)
|
|
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
|
vector_store = SupabaseVectorStore(
|
|
supabase, embeddings, table_name="documents")
|
|
memory = ConversationBufferMemory(
|
|
memory_key="chat_history", return_messages=True)
|
|
|
|
|
|
class ChatMessage(BaseModel):
|
|
model: str = "gpt-3.5-turbo"
|
|
question: str
|
|
history: List[Tuple[str, str]] # A list of tuples where each tuple is (speaker, text)
|
|
temperature: float = 0.0
|
|
max_tokens: int = 256
|
|
|
|
|
|
|
|
|
|
|
|
file_processors = {
|
|
".txt": process_txt,
|
|
".csv": process_csv,
|
|
".md": process_markdown,
|
|
".markdown": process_markdown,
|
|
".m4a": process_audio,
|
|
".mp3": process_audio,
|
|
".webm": process_audio,
|
|
".mp4": process_audio,
|
|
".mpga": process_audio,
|
|
".wav": process_audio,
|
|
".mpeg": process_audio,
|
|
".pdf": process_pdf,
|
|
".html": process_html,
|
|
".pptx": process_powerpoint,
|
|
".docx": process_docx,
|
|
".epub": process_epub,
|
|
".ipynb": process_ipnyb,
|
|
}
|
|
|
|
async def filter_file(file: UploadFile, supabase, vector_store, stats_db):
|
|
if await file_already_exists(supabase, file):
|
|
return {"message": f"🤔 {file.filename} already exists.", "type": "warning"}
|
|
elif file.file._file.tell() < 1:
|
|
return {"message": f"❌ {file.filename} is empty.", "type": "error"}
|
|
else:
|
|
file_extension = os.path.splitext(file.filename)[-1]
|
|
if file_extension in file_processors:
|
|
await file_processors[file_extension](vector_store, file, stats_db=None)
|
|
return {"message": f"✅ {file.filename} has been uploaded.", "type": "success"}
|
|
else:
|
|
return {"message": f"❌ {file.filename} is not supported.", "type": "error"}
|
|
|
|
@app.post("/upload")
|
|
async def upload_file(file: UploadFile):
|
|
message = await filter_file(file, supabase, vector_store, stats_db=None)
|
|
return message
|
|
|
|
@app.post("/chat/")
|
|
async def chat_endpoint(chat_message: ChatMessage):
|
|
history = chat_message.history
|
|
# Logic from your Streamlit app goes here. For example:
|
|
|
|
#this overwrites the built-in prompt of the ConversationalRetrievalChain
|
|
ConversationalRetrievalChain.prompts = LANGUAGE_PROMPT
|
|
|
|
qa = None
|
|
if chat_message.model.startswith("gpt"):
|
|
qa = ConversationalRetrievalChain.from_llm(
|
|
OpenAI(
|
|
model_name=chat_message.model, openai_api_key=openai_api_key, temperature=chat_message.temperature, max_tokens=chat_message.max_tokens), vector_store.as_retriever(), memory=memory, verbose=True)
|
|
elif anthropic_api_key and model.startswith("claude"):
|
|
qa = ConversationalRetrievalChain.from_llm(
|
|
ChatAnthropic(
|
|
model=model, anthropic_api_key=anthropic_api_key, temperature=temperature, max_tokens_to_sample=max_tokens), vector_store.as_retriever(), memory=memory, verbose=True, max_tokens_limit=102400)
|
|
|
|
history.append(("user", chat_message.question))
|
|
model_response = qa({"question": chat_message.question})
|
|
history.append(("assistant", model_response["answer"]))
|
|
|
|
return {"history": history}
|
|
|
|
@app.post("/crawl/")
|
|
async def crawl_endpoint(crawl_website: CrawlWebsite):
|
|
|
|
file_path, file_name = crawl_website.process()
|
|
|
|
# Create a SpooledTemporaryFile from the file_path
|
|
spooled_file = SpooledTemporaryFile()
|
|
with open(file_path, 'rb') as f:
|
|
shutil.copyfileobj(f, spooled_file)
|
|
|
|
# Pass the SpooledTemporaryFile to UploadFile
|
|
file = UploadFile(file=spooled_file, filename=file_name)
|
|
message = await filter_file(file, supabase, vector_store, stats_db=None)
|
|
return message
|
|
|
|
@app.get("/explore")
|
|
async def explore_endpoint():
|
|
response = supabase.table("documents").select("name:metadata->>file_name, size:metadata->>file_size", count="exact").execute()
|
|
documents = response.data # Access the data from the response
|
|
# Convert each dictionary to a tuple of items, then to a set to remove duplicates, and then back to a dictionary
|
|
unique_data = [dict(t) for t in set(tuple(d.items()) for d in documents)]
|
|
# Sort the list of documents by size in decreasing order
|
|
unique_data.sort(key=lambda x: int(x['size']), reverse=True)
|
|
|
|
return {"documents": unique_data}
|
|
|
|
@app.delete("/explore/{file_name}")
|
|
async def delete_endpoint(file_name: str):
|
|
response = supabase.table("documents").delete().match({"metadata->>file_name": file_name}).execute()
|
|
return {"message": f"{file_name} has been deleted."}
|
|
|
|
@app.get("/explore/{file_name}")
|
|
async def download_endpoint(file_name: str):
|
|
response = supabase.table("documents").select("metadata->>file_name, metadata->>file_size, metadata->>file_extension, metadata->>file_url").match({"metadata->>file_name": file_name}).execute()
|
|
documents = response.data
|
|
### Returns all documents with the same file name
|
|
return {"documents": documents}
|
|
|
|
|
|
|
|
@app.get("/")
|
|
async def root():
|
|
return {"message": "Hello World"}
|
|
|
|
|