quivr/backend/utils/vectors.py
Stan Girard 1d33fbd3eb
feat(file-system): added queue and filesystem (#1159)
* feat(queue): added

* feat(crawling): added queue

* fix(crawler): fixed github

* feat(docker): simplified docker compose

* feat(celery): added worker

* feat(files): now uploaded

* feat(files): missing routes

* feat(delete): added

* feat(storage): added policy and migrations

* feat(sqs): implemented

* feat(redis): added queue name variable

* fix(task): updated

* style(env): emoved unused env

* ci(tests): removed broken tests
2023-09-14 11:56:59 +02:00

81 lines
2.6 KiB
Python

from concurrent.futures import ThreadPoolExecutor
from typing import List
from uuid import UUID
from langchain.embeddings.openai import OpenAIEmbeddings
from logger import get_logger
from models.settings import get_documents_vector_store, get_embeddings, get_supabase_db
from pydantic import BaseModel
logger = get_logger(__name__)
class Neurons(BaseModel):
def create_vector(self, doc, user_openai_api_key=None):
documents_vector_store = get_documents_vector_store()
logger.info("Creating vector for document")
logger.info(f"Document: {doc}")
if user_openai_api_key:
documents_vector_store._embedding = OpenAIEmbeddings(
openai_api_key=user_openai_api_key
) # pyright: ignore reportPrivateUsage=none
try:
sids = documents_vector_store.add_documents([doc])
if sids and len(sids) > 0:
return sids
except Exception as e:
logger.error(f"Error creating vector for document {e}")
def create_embedding(self, content):
embeddings = get_embeddings()
return embeddings.embed_query(content)
def similarity_search(self, query, table="match_summaries", top_k=5, threshold=0.5):
query_embedding = self.create_embedding(query)
supabase_db = get_supabase_db()
summaries = supabase_db.similarity_search(
query_embedding, table, top_k, threshold
)
return summaries.data
def error_callback(exception):
print("An exception occurred:", exception)
def process_batch(batch_ids: List[str]):
supabase_db = get_supabase_db()
try:
if len(batch_ids) == 1:
return (supabase_db.get_vectors_by_batch(UUID(batch_ids[0]))).data
else:
return (supabase_db.get_vectors_in_batch(batch_ids)).data
except Exception as e:
logger.error("Error retrieving batched vectors", e)
def get_unique_files_from_vector_ids(vectors_ids: List[str]):
# Move into Vectors class
"""
Retrieve unique user data vectors.
"""
# constants
BATCH_SIZE = 5
with ThreadPoolExecutor() as executor:
futures = []
for i in range(0, len(vectors_ids), BATCH_SIZE):
batch_ids = vectors_ids[i : i + BATCH_SIZE]
future = executor.submit(process_batch, batch_ids)
futures.append(future)
# Retrieve the results
vectors_responses = [future.result() for future in futures]
documents = [item for sublist in vectors_responses for item in sublist]
unique_files = [dict(t) for t in set(tuple(d.items()) for d in documents)]
return unique_files