quivr/scripts/tables.sql
Stan Girard 76156fdad3 feat: 🎸 migration
added migration script
2023-07-03 11:11:29 +02:00

171 lines
4.3 KiB
PL/PgSQL

-- Create users table
CREATE TABLE IF NOT EXISTS users(
user_id UUID REFERENCES auth.users (id),
email TEXT,
date TEXT,
requests_count INT,
PRIMARY KEY (user_id, date)
);
-- Create chats table
CREATE TABLE IF NOT EXISTS chats(
chat_id UUID DEFAULT uuid_generate_v4() PRIMARY KEY,
user_id UUID REFERENCES auth.users (id),
creation_time TIMESTAMP DEFAULT current_timestamp,
history JSONB,
chat_name TEXT
);
-- Create chat_history table
CREATE TABLE IF NOT EXISTS chat_history (
message_id UUID DEFAULT uuid_generate_v4(),
chat_id UUID REFERENCES chats(chat_id),
user_message TEXT,
assistant TEXT,
message_time TIMESTAMP DEFAULT current_timestamp,
PRIMARY KEY (chat_id, message_id)
);
-- Create vector extension
CREATE EXTENSION IF NOT EXISTS vector;
-- Create vectors table
CREATE TABLE IF NOT EXISTS vectors (
id BIGSERIAL PRIMARY KEY,
content TEXT,
metadata JSONB,
embedding VECTOR(1536)
);
-- Create function to match vectors
CREATE OR REPLACE FUNCTION match_vectors(query_embedding VECTOR(1536), match_count INT, p_brain_id UUID)
RETURNS TABLE(
id BIGINT,
brain_id UUID,
content TEXT,
metadata JSONB,
embedding VECTOR(1536),
similarity FLOAT
) LANGUAGE plpgsql AS $$
#variable_conflict use_column
BEGIN
RETURN QUERY
SELECT
vectors.id,
brains_vectors.brain_id,
vectors.content,
vectors.metadata,
vectors.embedding,
1 - (vectors.embedding <=> query_embedding) AS similarity
FROM
vectors
INNER JOIN
brains_vectors ON vectors.id = brains_vectors.vector_id
WHERE brains_vectors.brain_id = p_brain_id
ORDER BY
vectors.embedding <=> query_embedding
LIMIT match_count;
END;
$$;
-- Create stats table
CREATE TABLE IF NOT EXISTS stats (
time TIMESTAMP,
chat BOOLEAN,
embedding BOOLEAN,
details TEXT,
metadata JSONB,
id INTEGER PRIMARY KEY GENERATED ALWAYS AS IDENTITY
);
-- Create summaries table
CREATE TABLE IF NOT EXISTS summaries (
id BIGSERIAL PRIMARY KEY,
document_id BIGINT REFERENCES vectors(id),
content TEXT,
metadata JSONB,
embedding VECTOR(1536)
);
-- Create function to match summaries
CREATE OR REPLACE FUNCTION match_summaries(query_embedding VECTOR(1536), match_count INT, match_threshold FLOAT)
RETURNS TABLE(
id BIGINT,
document_id BIGINT,
content TEXT,
metadata JSONB,
embedding VECTOR(1536),
similarity FLOAT
) LANGUAGE plpgsql AS $$
#variable_conflict use_column
BEGIN
RETURN QUERY
SELECT
id,
document_id,
content,
metadata,
embedding,
1 - (summaries.embedding <=> query_embedding) AS similarity
FROM
summaries
WHERE 1 - (summaries.embedding <=> query_embedding) > match_threshold
ORDER BY
summaries.embedding <=> query_embedding
LIMIT match_count;
END;
$$;
-- Create api_keys table
CREATE TABLE IF NOT EXISTS api_keys(
key_id UUID DEFAULT gen_random_uuid() PRIMARY KEY,
user_id UUID REFERENCES auth.users (id),
api_key TEXT UNIQUE,
creation_time TIMESTAMP DEFAULT current_timestamp,
deleted_time TIMESTAMP,
is_active BOOLEAN DEFAULT true
);
-- Create brains table
CREATE TABLE IF NOT EXISTS brains (
brain_id UUID DEFAULT gen_random_uuid() PRIMARY KEY,
name TEXT,
status TEXT,
model TEXT,
max_tokens TEXT,
temperature FLOAT
);
-- Create brains X users table
CREATE TABLE IF NOT EXISTS brains_users (
brain_id UUID,
user_id UUID,
rights VARCHAR(255),
default_brain BOOLEAN DEFAULT false,
PRIMARY KEY (brain_id, user_id),
FOREIGN KEY (user_id) REFERENCES auth.users (id),
FOREIGN KEY (brain_id) REFERENCES Brains (brain_id)
);
-- Create brains X vectors table
CREATE TABLE IF NOT EXISTS brains_vectors (
brain_id UUID,
vector_id BIGINT,
file_sha1 TEXT,
PRIMARY KEY (brain_id, vector_id),
FOREIGN KEY (vector_id) REFERENCES vectors (id),
FOREIGN KEY (brain_id) REFERENCES brains (brain_id)
);
CREATE TABLE IF NOT EXISTS migrations (
id SERIAL PRIMARY KEY,
name VARCHAR(255) NOT NULL,
executed_at TIMESTAMPTZ DEFAULT current_timestamp
);
INSERT INTO migrations (name)
SELECT ('20230629143400_add_file_sha1_brains_vectors')
WHERE NOT EXISTS (
SELECT 1 FROM migrations WHERE name = '20230629143400_add_file_sha1_brains_vectors'
);