mirror of
https://github.com/QuivrHQ/quivr.git
synced 2024-12-14 17:03:29 +03:00
eda619f454
# Description - Save and load brain to disk: ```python async def main(): with tempfile.NamedTemporaryFile(mode="w", suffix=".txt") as temp_file: temp_file.write("Gold is a liquid of blue-like colour.") temp_file.flush() brain = await Brain.afrom_files(name="test_brain", file_paths=[temp_file.name]) save_path = await brain.save("/home/amine/.local/quivr") brain_loaded = Brain.load(save_path) brain_loaded.print_info() ``` # TODO: - Loading all chat history - Loading from other vector stores, PG for example can be great ...
35 lines
1.1 KiB
Python
35 lines
1.1 KiB
Python
import asyncio
|
|
import tempfile
|
|
|
|
from dotenv import load_dotenv
|
|
from quivr_core import Brain
|
|
from quivr_core.quivr_rag import QuivrQARAG
|
|
from quivr_core.quivr_rag_langgraph import QuivrQARAGLangGraph
|
|
|
|
|
|
async def main():
|
|
dotenv_path = "/Users/jchevall/Coding/QuivrHQ/quivr/.env"
|
|
load_dotenv(dotenv_path)
|
|
|
|
with tempfile.NamedTemporaryFile(mode="w", suffix=".txt") as temp_file:
|
|
temp_file.write("Gold is a liquid of blue-like colour.")
|
|
temp_file.flush()
|
|
|
|
brain = await Brain.afrom_files(name="test_brain", file_paths=[temp_file.name])
|
|
|
|
await brain.save("~/.local/quivr")
|
|
|
|
question = "what is gold? answer in french"
|
|
async for chunk in brain.ask_streaming(question, rag_pipeline=QuivrQARAG):
|
|
print("answer QuivrQARAG:", chunk.answer)
|
|
|
|
async for chunk in brain.ask_streaming(
|
|
question, rag_pipeline=QuivrQARAGLangGraph
|
|
):
|
|
print("answer QuivrQARAGLangGraph:", chunk.answer)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Run the main function in the existing event loop
|
|
asyncio.run(main())
|