mirror of
https://github.com/QuivrHQ/quivr.git
synced 2025-01-05 23:03:53 +03:00
285fe5b960
# Description This PR includes far too many new features: - detection of user intent (closes CORE-211) - treating multiple questions in parallel (closes CORE-212) - using the chat history when answering a question (closes CORE-213) - filtering of retrieved chunks by relevance threshold (closes CORE-217) - dynamic retrieval of chunks (closes CORE-218) - enabling web search via Tavily (closes CORE-220) - enabling agent / assistant to activate tools when relevant to complete the user task (closes CORE-224) Also closes CORE-205 ## Checklist before requesting a review Please delete options that are not relevant. - [ ] My code follows the style guidelines of this project - [ ] I have performed a self-review of my code - [ ] I have commented hard-to-understand areas - [ ] I have ideally added tests that prove my fix is effective or that my feature works - [ ] New and existing unit tests pass locally with my changes - [ ] Any dependent changes have been merged ## Screenshots (if appropriate): --------- Co-authored-by: Stan Girard <stan@quivr.app>
612 lines
22 KiB
Python
612 lines
22 KiB
Python
import asyncio
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
from pprint import PrettyPrinter
|
|
from typing import Any, AsyncGenerator, Callable, Dict, Self, Type, Union
|
|
from uuid import UUID, uuid4
|
|
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.messages import AIMessage, HumanMessage
|
|
from langchain_core.vectorstores import VectorStore
|
|
from quivr_core.rag.entities.models import ParsedRAGResponse
|
|
from langchain_openai import OpenAIEmbeddings
|
|
from quivr_core.rag.quivr_rag import QuivrQARAG
|
|
from rich.console import Console
|
|
from rich.panel import Panel
|
|
|
|
from quivr_core.brain.info import BrainInfo, ChatHistoryInfo
|
|
from quivr_core.brain.serialization import (
|
|
BrainSerialized,
|
|
EmbedderConfig,
|
|
FAISSConfig,
|
|
LocalStorageConfig,
|
|
TransparentStorageConfig,
|
|
)
|
|
from quivr_core.rag.entities.chat import ChatHistory
|
|
from quivr_core.rag.entities.config import RetrievalConfig
|
|
from quivr_core.files.file import load_qfile
|
|
from quivr_core.llm import LLMEndpoint
|
|
from quivr_core.rag.entities.models import (
|
|
ParsedRAGChunkResponse,
|
|
QuivrKnowledge,
|
|
SearchResult,
|
|
)
|
|
from quivr_core.processor.registry import get_processor_class
|
|
from quivr_core.rag.quivr_rag_langgraph import QuivrQARAGLangGraph
|
|
from quivr_core.storage.local_storage import LocalStorage, TransparentStorage
|
|
from quivr_core.storage.storage_base import StorageBase
|
|
|
|
from .brain_defaults import build_default_vectordb, default_embedder, default_llm
|
|
|
|
logger = logging.getLogger("quivr_core")
|
|
|
|
|
|
async def process_files(
|
|
storage: StorageBase, skip_file_error: bool, **processor_kwargs: dict[str, Any]
|
|
) -> list[Document]:
|
|
"""
|
|
Process files in storage.
|
|
This function takes a StorageBase and return a list of langchain documents.
|
|
Args:
|
|
storage (StorageBase): The storage containing the files to process.
|
|
skip_file_error (bool): Whether to skip files that cannot be processed.
|
|
processor_kwargs (dict[str, Any]): Additional arguments for the processor.
|
|
Returns:
|
|
list[Document]: List of processed documents in the Langchain Document format.
|
|
Raises:
|
|
ValueError: If a file cannot be processed and skip_file_error is False.
|
|
Exception: If no processor is found for a file of a specific type and skip_file_error is False.
|
|
"""
|
|
|
|
knowledge = []
|
|
for file in await storage.get_files():
|
|
try:
|
|
if file.file_extension:
|
|
processor_cls = get_processor_class(file.file_extension)
|
|
logger.debug(f"processing {file} using class {processor_cls.__name__}")
|
|
processor = processor_cls(**processor_kwargs)
|
|
docs = await processor.process_file(file)
|
|
knowledge.extend(docs)
|
|
else:
|
|
logger.error(f"can't find processor for {file}")
|
|
if skip_file_error:
|
|
continue
|
|
else:
|
|
raise ValueError(f"can't parse {file}. can't find file extension")
|
|
except KeyError as e:
|
|
if skip_file_error:
|
|
continue
|
|
else:
|
|
raise Exception(f"Can't parse {file}. No available processor") from e
|
|
|
|
return knowledge
|
|
|
|
|
|
class Brain:
|
|
"""
|
|
A class representing a Brain.
|
|
This class allows for the creation of a Brain, which is a collection of knowledge one wants to retrieve information from.
|
|
A Brain is set to:
|
|
* Store files in the storage of your choice (local, S3, etc.)
|
|
* Process the files in the storage to extract text and metadata in a wide range of format.
|
|
* Store the processed files in the vector store of your choice (FAISS, PGVector, etc.) - default to FAISS.
|
|
* Create an index of the processed files.
|
|
* Use the *Quivr* workflow for the retrieval augmented generation.
|
|
A Brain is able to:
|
|
* Search for information in the vector store.
|
|
* Answer questions about the knowledges in the Brain.
|
|
* Stream the answer to the question.
|
|
Attributes:
|
|
name (str): The name of the brain.
|
|
id (UUID): The unique identifier of the brain.
|
|
storage (StorageBase): The storage used to store the files.
|
|
llm (LLMEndpoint): The language model used to generate the answer.
|
|
vector_db (VectorStore): The vector store used to store the processed files.
|
|
embedder (Embeddings): The embeddings used to create the index of the processed files.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
name: str,
|
|
llm: LLMEndpoint,
|
|
id: UUID | None = None,
|
|
vector_db: VectorStore | None = None,
|
|
embedder: Embeddings | None = None,
|
|
storage: StorageBase | None = None,
|
|
):
|
|
self.id = id
|
|
self.name = name
|
|
self.storage = storage
|
|
|
|
# Chat history
|
|
self._chats = self._init_chats()
|
|
self.default_chat = list(self._chats.values())[0]
|
|
|
|
# RAG dependencies:
|
|
self.llm = llm
|
|
self.vector_db = vector_db
|
|
self.embedder = embedder
|
|
|
|
def __repr__(self) -> str:
|
|
pp = PrettyPrinter(width=80, depth=None, compact=False, sort_dicts=False)
|
|
return pp.pformat(self.info())
|
|
|
|
def print_info(self):
|
|
console = Console()
|
|
tree = self.info().to_tree()
|
|
panel = Panel(tree, title="Brain Info", expand=False, border_style="bold")
|
|
console.print(panel)
|
|
|
|
@classmethod
|
|
def load(cls, folder_path: str | Path) -> Self:
|
|
"""
|
|
Load a brain from a folder path.
|
|
Args:
|
|
folder_path (str | Path): The path to the folder containing the brain.
|
|
Returns:
|
|
Brain: The brain loaded from the folder path.
|
|
Example:
|
|
```python
|
|
brain_loaded = Brain.load("path/to/brain")
|
|
brain_loaded.print_info()
|
|
```
|
|
"""
|
|
if isinstance(folder_path, str):
|
|
folder_path = Path(folder_path)
|
|
if not folder_path.exists():
|
|
raise ValueError(f"path {folder_path} doesn't exist")
|
|
|
|
# Load brainserialized
|
|
with open(os.path.join(folder_path, "config.json"), "r") as f:
|
|
bserialized = BrainSerialized.model_validate_json(f.read())
|
|
|
|
storage: StorageBase | None = None
|
|
# Loading storage
|
|
if bserialized.storage_config.storage_type == "transparent_storage":
|
|
storage = TransparentStorage.load(bserialized.storage_config)
|
|
elif bserialized.storage_config.storage_type == "local_storage":
|
|
storage = LocalStorage.load(bserialized.storage_config)
|
|
else:
|
|
raise ValueError("unknown storage")
|
|
|
|
# Load Embedder
|
|
if bserialized.embedding_config.embedder_type == "openai_embedding":
|
|
from langchain_openai import OpenAIEmbeddings
|
|
|
|
embedder = OpenAIEmbeddings(**bserialized.embedding_config.config)
|
|
else:
|
|
raise ValueError("unknown embedder")
|
|
|
|
# Load vector db
|
|
if bserialized.vectordb_config.vectordb_type == "faiss":
|
|
from langchain_community.vectorstores import FAISS
|
|
|
|
vector_db = FAISS.load_local(
|
|
folder_path=bserialized.vectordb_config.vectordb_folder_path,
|
|
embeddings=embedder,
|
|
allow_dangerous_deserialization=True,
|
|
)
|
|
else:
|
|
raise ValueError("Unsupported vectordb")
|
|
|
|
return cls(
|
|
id=bserialized.id,
|
|
name=bserialized.name,
|
|
embedder=embedder,
|
|
llm=LLMEndpoint.from_config(bserialized.llm_config),
|
|
storage=storage,
|
|
vector_db=vector_db,
|
|
)
|
|
|
|
async def save(self, folder_path: str | Path):
|
|
"""
|
|
Save the brain to a folder path.
|
|
Args:
|
|
folder_path (str | Path): The path to the folder where the brain will be saved.
|
|
Returns:
|
|
str: The path to the folder where the brain was saved.
|
|
Example:
|
|
```python
|
|
await brain.save("path/to/brain")
|
|
```
|
|
"""
|
|
if isinstance(folder_path, str):
|
|
folder_path = Path(folder_path)
|
|
|
|
brain_path = os.path.join(folder_path, f"brain_{self.id}")
|
|
os.makedirs(brain_path, exist_ok=True)
|
|
|
|
from langchain_community.vectorstores import FAISS
|
|
|
|
if isinstance(self.vector_db, FAISS):
|
|
vectordb_path = os.path.join(brain_path, "vector_store")
|
|
os.makedirs(vectordb_path, exist_ok=True)
|
|
self.vector_db.save_local(folder_path=vectordb_path)
|
|
vector_store = FAISSConfig(vectordb_folder_path=vectordb_path)
|
|
else:
|
|
raise Exception("can't serialize other vector stores for now")
|
|
|
|
if isinstance(self.embedder, OpenAIEmbeddings):
|
|
embedder_config = EmbedderConfig(
|
|
config=self.embedder.dict(exclude={"openai_api_key"})
|
|
)
|
|
else:
|
|
raise Exception("can't serialize embedder other than openai for now")
|
|
|
|
storage_config: Union[LocalStorageConfig, TransparentStorageConfig]
|
|
# TODO : each instance should know how to serialize/deserialize itself
|
|
if isinstance(self.storage, LocalStorage):
|
|
serialized_files = {
|
|
f.id: f.serialize() for f in await self.storage.get_files()
|
|
}
|
|
storage_config = LocalStorageConfig(
|
|
storage_path=self.storage.dir_path, files=serialized_files
|
|
)
|
|
elif isinstance(self.storage, TransparentStorage):
|
|
serialized_files = {
|
|
f.id: f.serialize() for f in await self.storage.get_files()
|
|
}
|
|
storage_config = TransparentStorageConfig(files=serialized_files)
|
|
else:
|
|
raise Exception("can't serialize storage. not supported for now")
|
|
|
|
bserialized = BrainSerialized(
|
|
id=self.id,
|
|
name=self.name,
|
|
chat_history=self.chat_history.get_chat_history(),
|
|
llm_config=self.llm.get_config(),
|
|
vectordb_config=vector_store,
|
|
embedding_config=embedder_config,
|
|
storage_config=storage_config,
|
|
)
|
|
|
|
with open(os.path.join(brain_path, "config.json"), "w") as f:
|
|
f.write(bserialized.model_dump_json())
|
|
return brain_path
|
|
|
|
def info(self) -> BrainInfo:
|
|
# TODO: dim of embedding
|
|
# "embedder": {},
|
|
chats_info = ChatHistoryInfo(
|
|
nb_chats=len(self._chats),
|
|
current_default_chat=self.default_chat.id,
|
|
current_chat_history_length=len(self.default_chat),
|
|
)
|
|
|
|
return BrainInfo(
|
|
brain_id=self.id,
|
|
brain_name=self.name,
|
|
files_info=self.storage.info() if self.storage else None,
|
|
chats_info=chats_info,
|
|
llm_info=self.llm.info(),
|
|
)
|
|
|
|
@property
|
|
def chat_history(self) -> ChatHistory:
|
|
return self.default_chat
|
|
|
|
def _init_chats(self) -> Dict[UUID, ChatHistory]:
|
|
chat_id = uuid4()
|
|
default_chat = ChatHistory(chat_id=chat_id, brain_id=self.id)
|
|
return {chat_id: default_chat}
|
|
|
|
@classmethod
|
|
async def afrom_files(
|
|
cls,
|
|
*,
|
|
name: str,
|
|
file_paths: list[str | Path],
|
|
vector_db: VectorStore | None = None,
|
|
storage: StorageBase = TransparentStorage(),
|
|
llm: LLMEndpoint | None = None,
|
|
embedder: Embeddings | None = None,
|
|
skip_file_error: bool = False,
|
|
processor_kwargs: dict[str, Any] | None = None,
|
|
):
|
|
"""
|
|
Create a brain from a list of file paths.
|
|
Args:
|
|
name (str): The name of the brain.
|
|
file_paths (list[str | Path]): The list of file paths to add to the brain.
|
|
vector_db (VectorStore | None): The vector store used to store the processed files.
|
|
storage (StorageBase): The storage used to store the files.
|
|
llm (LLMEndpoint | None): The language model used to generate the answer.
|
|
embedder (Embeddings | None): The embeddings used to create the index of the processed files.
|
|
skip_file_error (bool): Whether to skip files that cannot be processed.
|
|
processor_kwargs (dict[str, Any] | None): Additional arguments for the processor.
|
|
Returns:
|
|
Brain: The brain created from the file paths.
|
|
Example:
|
|
```python
|
|
brain = await Brain.afrom_files(name="My Brain", file_paths=["file1.pdf", "file2.pdf"])
|
|
brain.print_info()
|
|
```
|
|
"""
|
|
if llm is None:
|
|
llm = default_llm()
|
|
|
|
if embedder is None:
|
|
embedder = default_embedder()
|
|
|
|
processor_kwargs = processor_kwargs or {}
|
|
|
|
brain_id = uuid4()
|
|
|
|
# TODO: run in parallel using tasks
|
|
|
|
for path in file_paths:
|
|
file = await load_qfile(brain_id, path)
|
|
await storage.upload_file(file)
|
|
|
|
logger.debug(f"uploaded all files to {storage}")
|
|
|
|
# Parse files
|
|
docs = await process_files(
|
|
storage=storage,
|
|
skip_file_error=skip_file_error,
|
|
**processor_kwargs,
|
|
)
|
|
|
|
# Building brain's vectordb
|
|
if vector_db is None:
|
|
vector_db = await build_default_vectordb(docs, embedder)
|
|
else:
|
|
await vector_db.aadd_documents(docs)
|
|
|
|
logger.debug(f"added {len(docs)} chunks to vectordb")
|
|
|
|
return cls(
|
|
id=brain_id,
|
|
name=name,
|
|
storage=storage,
|
|
llm=llm,
|
|
embedder=embedder,
|
|
vector_db=vector_db,
|
|
)
|
|
|
|
@classmethod
|
|
def from_files(
|
|
cls,
|
|
*,
|
|
name: str,
|
|
file_paths: list[str | Path],
|
|
vector_db: VectorStore | None = None,
|
|
storage: StorageBase = TransparentStorage(),
|
|
llm: LLMEndpoint | None = None,
|
|
embedder: Embeddings | None = None,
|
|
skip_file_error: bool = False,
|
|
processor_kwargs: dict[str, Any] | None = None,
|
|
) -> Self:
|
|
loop = asyncio.get_event_loop()
|
|
return loop.run_until_complete(
|
|
cls.afrom_files(
|
|
name=name,
|
|
file_paths=file_paths,
|
|
vector_db=vector_db,
|
|
storage=storage,
|
|
llm=llm,
|
|
embedder=embedder,
|
|
skip_file_error=skip_file_error,
|
|
processor_kwargs=processor_kwargs,
|
|
)
|
|
)
|
|
|
|
@classmethod
|
|
async def afrom_langchain_documents(
|
|
cls,
|
|
*,
|
|
name: str,
|
|
langchain_documents: list[Document],
|
|
vector_db: VectorStore | None = None,
|
|
storage: StorageBase = TransparentStorage(),
|
|
llm: LLMEndpoint | None = None,
|
|
embedder: Embeddings | None = None,
|
|
) -> Self:
|
|
"""
|
|
Create a brain from a list of langchain documents.
|
|
Args:
|
|
name (str): The name of the brain.
|
|
langchain_documents (list[Document]): The list of langchain documents to add to the brain.
|
|
vector_db (VectorStore | None): The vector store used to store the processed files.
|
|
storage (StorageBase): The storage used to store the files.
|
|
llm (LLMEndpoint | None): The language model used to generate the answer.
|
|
embedder (Embeddings | None): The embeddings used to create the index of the processed files.
|
|
Returns:
|
|
Brain: The brain created from the langchain documents.
|
|
Example:
|
|
```python
|
|
from langchain_core.documents import Document
|
|
documents = [Document(page_content="Hello, world!")]
|
|
brain = await Brain.afrom_langchain_documents(name="My Brain", langchain_documents=documents)
|
|
brain.print_info()
|
|
```
|
|
"""
|
|
|
|
if llm is None:
|
|
llm = default_llm()
|
|
|
|
if embedder is None:
|
|
embedder = default_embedder()
|
|
|
|
brain_id = uuid4()
|
|
|
|
# Building brain's vectordb
|
|
if vector_db is None:
|
|
vector_db = await build_default_vectordb(langchain_documents, embedder)
|
|
else:
|
|
await vector_db.aadd_documents(langchain_documents)
|
|
|
|
return cls(
|
|
id=brain_id,
|
|
name=name,
|
|
storage=storage,
|
|
llm=llm,
|
|
embedder=embedder,
|
|
vector_db=vector_db,
|
|
)
|
|
|
|
async def asearch(
|
|
self,
|
|
query: str | Document,
|
|
n_results: int = 5,
|
|
filter: Callable | Dict[str, Any] | None = None,
|
|
fetch_n_neighbors: int = 20,
|
|
) -> list[SearchResult]:
|
|
"""
|
|
Search for relevant documents in the brain based on a query.
|
|
Args:
|
|
query (str | Document): The query to search for.
|
|
n_results (int): The number of results to return.
|
|
filter (Callable | Dict[str, Any] | None): The filter to apply to the search.
|
|
fetch_n_neighbors (int): The number of neighbors to fetch.
|
|
Returns:
|
|
list[SearchResult]: The list of retrieved chunks.
|
|
Example:
|
|
```python
|
|
brain = Brain.from_files(name="My Brain", file_paths=["file1.pdf", "file2.pdf"])
|
|
results = await brain.asearch("Why everybody loves Quivr?")
|
|
for result in results:
|
|
print(result.chunk.page_content)
|
|
```
|
|
"""
|
|
if not self.vector_db:
|
|
raise ValueError("No vector db configured for this brain")
|
|
|
|
result = await self.vector_db.asimilarity_search_with_score(
|
|
query, k=n_results, filter=filter, fetch_k=fetch_n_neighbors
|
|
)
|
|
|
|
return [SearchResult(chunk=d, distance=s) for d, s in result]
|
|
|
|
def get_chat_history(self, chat_id: UUID):
|
|
return self._chats[chat_id]
|
|
|
|
# TODO(@aminediro)
|
|
def add_file(self) -> None:
|
|
# add it to storage
|
|
# add it to vectorstore
|
|
raise NotImplementedError
|
|
|
|
async def ask_streaming(
|
|
self,
|
|
question: str,
|
|
retrieval_config: RetrievalConfig | None = None,
|
|
rag_pipeline: Type[Union[QuivrQARAG, QuivrQARAGLangGraph]] | None = None,
|
|
list_files: list[QuivrKnowledge] | None = None,
|
|
chat_history: ChatHistory | None = None,
|
|
) -> AsyncGenerator[ParsedRAGChunkResponse, ParsedRAGChunkResponse]:
|
|
"""
|
|
Ask a question to the brain and get a streamed generated answer.
|
|
Args:
|
|
question (str): The question to ask.
|
|
retrieval_config (RetrievalConfig | None): The retrieval configuration (see RetrievalConfig docs).
|
|
rag_pipeline (Type[Union[QuivrQARAG, QuivrQARAGLangGraph]] | None): The RAG pipeline to use.
|
|
list_files (list[QuivrKnowledge] | None): The list of files to include in the RAG pipeline.
|
|
chat_history (ChatHistory | None): The chat history to use.
|
|
Returns:
|
|
AsyncGenerator[ParsedRAGChunkResponse, ParsedRAGChunkResponse]: The streamed generated answer.
|
|
Example:
|
|
```python
|
|
brain = Brain.from_files(name="My Brain", file_paths=["file1.pdf", "file2.pdf"])
|
|
async for chunk in brain.ask_streaming("What is the meaning of life?"):
|
|
print(chunk.answer)
|
|
```
|
|
"""
|
|
llm = self.llm
|
|
|
|
# If you passed a different llm model we'll override the brain one
|
|
if retrieval_config:
|
|
if retrieval_config.llm_config != self.llm.get_config():
|
|
llm = LLMEndpoint.from_config(config=retrieval_config.llm_config)
|
|
else:
|
|
retrieval_config = RetrievalConfig(llm_config=self.llm.get_config())
|
|
|
|
if rag_pipeline is None:
|
|
rag_pipeline = QuivrQARAGLangGraph
|
|
|
|
rag_instance = rag_pipeline(
|
|
retrieval_config=retrieval_config, llm=llm, vector_store=self.vector_db
|
|
)
|
|
|
|
chat_history = self.default_chat if chat_history is None else chat_history
|
|
list_files = [] if list_files is None else list_files
|
|
|
|
full_answer = ""
|
|
async for response in rag_instance.answer_astream(
|
|
question=question, history=chat_history, list_files=list_files
|
|
):
|
|
# Format output to be correct servicedf;j
|
|
if not response.last_chunk:
|
|
yield response
|
|
full_answer += response.answer
|
|
|
|
# TODO : add sources, metdata etc ...
|
|
chat_history.append(HumanMessage(content=question))
|
|
chat_history.append(AIMessage(content=full_answer))
|
|
yield response
|
|
|
|
async def aask(
|
|
self,
|
|
question: str,
|
|
retrieval_config: RetrievalConfig | None = None,
|
|
rag_pipeline: Type[Union[QuivrQARAG, QuivrQARAGLangGraph]] | None = None,
|
|
list_files: list[QuivrKnowledge] | None = None,
|
|
chat_history: ChatHistory | None = None,
|
|
) -> ParsedRAGResponse:
|
|
"""
|
|
Synchronous version that asks a question to the brain and gets a generated answer.
|
|
Args:
|
|
question (str): The question to ask.
|
|
retrieval_config (RetrievalConfig | None): The retrieval configuration (see RetrievalConfig docs).
|
|
rag_pipeline (Type[Union[QuivrQARAG, QuivrQARAGLangGraph]] | None): The RAG pipeline to use.
|
|
list_files (list[QuivrKnowledge] | None): The list of files to include in the RAG pipeline.
|
|
chat_history (ChatHistory | None): The chat history to use.
|
|
Returns:
|
|
ParsedRAGResponse: The generated answer.
|
|
"""
|
|
full_answer = ""
|
|
|
|
async for response in self.ask_streaming(
|
|
question=question,
|
|
retrieval_config=retrieval_config,
|
|
rag_pipeline=rag_pipeline,
|
|
list_files=list_files,
|
|
chat_history=chat_history,
|
|
):
|
|
full_answer += response.answer
|
|
|
|
return ParsedRAGResponse(answer=full_answer)
|
|
|
|
def ask(
|
|
self,
|
|
question: str,
|
|
retrieval_config: RetrievalConfig | None = None,
|
|
rag_pipeline: Type[Union[QuivrQARAG, QuivrQARAGLangGraph]] | None = None,
|
|
list_files: list[QuivrKnowledge] | None = None,
|
|
chat_history: ChatHistory | None = None,
|
|
) -> ParsedRAGResponse:
|
|
"""
|
|
Fully synchronous version that asks a question to the brain and gets a generated answer.
|
|
Args:
|
|
question (str): The question to ask.
|
|
retrieval_config (RetrievalConfig | None): The retrieval configuration (see RetrievalConfig docs).
|
|
rag_pipeline (Type[Union[QuivrQARAG, QuivrQARAGLangGraph]] | None): The RAG pipeline to use.
|
|
list_files (list[QuivrKnowledge] | None): The list of files to include in the RAG pipeline.
|
|
chat_history (ChatHistory | None): The chat history to use.
|
|
Returns:
|
|
ParsedRAGResponse: The generated answer.
|
|
"""
|
|
loop = asyncio.get_event_loop()
|
|
return loop.run_until_complete(
|
|
self.aask(
|
|
question=question,
|
|
retrieval_config=retrieval_config,
|
|
rag_pipeline=rag_pipeline,
|
|
list_files=list_files,
|
|
chat_history=chat_history,
|
|
)
|
|
)
|