quivr/backend/core/parsers/audio.py
ChloeMouret 711e9fb8c9
refactor: delete common_dependencies function (#843)
* use function for get_documents_vector_store

* use function for get_embeddings

* use function for get_supabase_client

* use function for get_supabase_db

* delete lasts common_dependencies
2023-08-03 20:24:42 +02:00

86 lines
2.6 KiB
Python

import os
import tempfile
import time
import openai
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from models.files import File
from models.settings import get_documents_vector_store
from utils.file import compute_sha1_from_content
async def process_audio(
file: File,
enable_summarization: bool,
user,
user_openai_api_key,
):
temp_filename = None
file_sha = ""
dateshort = time.strftime("%Y%m%d-%H%M%S")
file_meta_name = f"audiotranscript_{dateshort}.txt"
documents_vector_store = get_documents_vector_store()
# use this for whisper
os.environ.get("OPENAI_API_KEY")
if user_openai_api_key:
pass
try:
upload_file = file.file
with tempfile.NamedTemporaryFile(
delete=False,
suffix=upload_file.filename, # pyright: ignore reportPrivateUsage=none
) as tmp_file:
await upload_file.seek(0) # pyright: ignore reportPrivateUsage=none
content = (
await upload_file.read() # pyright: ignore reportPrivateUsage=none
)
tmp_file.write(content)
tmp_file.flush()
tmp_file.close()
temp_filename = tmp_file.name
with open(tmp_file.name, "rb") as audio_file:
transcript = openai.Audio.transcribe("whisper-1", audio_file)
file_sha = compute_sha1_from_content(
transcript.text.encode("utf-8") # pyright: ignore reportPrivateUsage=none
)
file_size = len(
transcript.text.encode("utf-8") # pyright: ignore reportPrivateUsage=none
)
chunk_size = 500
chunk_overlap = 0
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
texts = text_splitter.split_text(
transcript.text.encode("utf-8") # pyright: ignore reportPrivateUsage=none
)
docs_with_metadata = [
Document(
page_content=text,
metadata={
"file_sha1": file_sha,
"file_size": file_size,
"file_name": file_meta_name,
"chunk_size": chunk_size,
"chunk_overlap": chunk_overlap,
"date": dateshort,
},
)
for text in texts
]
documents_vector_store.add_documents(docs_with_metadata)
finally:
if temp_filename and os.path.exists(temp_filename):
os.remove(temp_filename)