mirror of
https://github.com/QuivrHQ/quivr.git
synced 2024-12-16 01:55:15 +03:00
107 lines
3.6 KiB
Python
107 lines
3.6 KiB
Python
from fastapi import FastAPI, UploadFile, File, HTTPException
|
|
import os
|
|
from pydantic import BaseModel
|
|
from typing import List, Tuple
|
|
from supabase import create_client, Client
|
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
from langchain.memory import ConversationBufferMemory
|
|
from langchain.vectorstores import SupabaseVectorStore
|
|
from langchain.chains import ConversationalRetrievalChain
|
|
from langchain.llms import OpenAI
|
|
|
|
|
|
from common import file_already_exists
|
|
from txt import process_txt
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
app = FastAPI()
|
|
|
|
origins = [
|
|
"http://localhost.tiangolo.com",
|
|
"https://localhost.tiangolo.com",
|
|
"http://localhost",
|
|
"http://localhost:3000",
|
|
"http://localhost:8080",
|
|
]
|
|
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=origins,
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
supabase_url = os.environ.get("SUPABASE_URL")
|
|
supabase_key = os.environ.get("SUPABASE_SERVICE_KEY")
|
|
openai_api_key = os.environ.get("OPENAI_API_KEY")
|
|
anthropic_api_key = ""
|
|
supabase: Client = create_client(supabase_url, supabase_key)
|
|
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
|
vector_store = SupabaseVectorStore(
|
|
supabase, embeddings, table_name="documents")
|
|
memory = ConversationBufferMemory(
|
|
memory_key="chat_history", return_messages=True)
|
|
|
|
|
|
class ChatMessage(BaseModel):
|
|
model: str
|
|
question: str
|
|
history: List[Tuple[str, str]] # A list of tuples where each tuple is (speaker, text)
|
|
|
|
file_processors = {
|
|
".txt": process_txt,
|
|
}
|
|
|
|
async def filter_file(file: UploadFile, supabase, vector_store):
|
|
if await file_already_exists(supabase, file):
|
|
return f"😎 {file.filename} is already in the database."
|
|
elif file.file._file.tell() < 1:
|
|
return f"💨 {file.filename} is empty."
|
|
else:
|
|
file_extension = os.path.splitext(file.filename)[-1]
|
|
if file_extension in file_processors:
|
|
await file_processors[file_extension](vector_store, file, stats_db=None)
|
|
return f"✅ {file.filename} "
|
|
else:
|
|
return f"❌ {file.filename} is not a valid file type."
|
|
|
|
@app.post("/upload")
|
|
async def upload_file(file: UploadFile):
|
|
# Modify your code to work with FastAPI
|
|
# Here we assume that you have some way to get `supabase`, `openai_key`, and `vector_store`
|
|
|
|
print(f"Received file: {file.filename}")
|
|
|
|
message = await filter_file(file, supabase, vector_store)
|
|
|
|
return {"message": message}
|
|
|
|
@app.post("/chat/")
|
|
async def chat_endpoint(chat_message: ChatMessage):
|
|
model = chat_message.model
|
|
question = chat_message.question
|
|
history = chat_message.history
|
|
temperature = 0
|
|
max_tokens = 100
|
|
|
|
# Logic from your Streamlit app goes here. For example:
|
|
qa = None
|
|
if model.startswith("gpt"):
|
|
qa = ConversationalRetrievalChain.from_llm(
|
|
OpenAI(
|
|
model_name=model, openai_api_key=openai_api_key, temperature=temperature, max_tokens=max_tokens), vector_store.as_retriever(), memory=memory, verbose=True)
|
|
elif anthropic_api_key and model.startswith("claude"):
|
|
qa = ConversationalRetrievalChain.from_llm(
|
|
ChatAnthropic(
|
|
model=model, anthropic_api_key=anthropic_api_key, temperature=temperature, max_tokens_to_sample=max_tokens), vector_store.as_retriever(), memory=memory, verbose=True, max_tokens_limit=102400)
|
|
|
|
history.append(("user", question))
|
|
model_response = qa({"question": question})
|
|
history.append(("assistant", model_response["answer"]))
|
|
|
|
return {"history": history}
|
|
|
|
@app.get("/")
|
|
async def root():
|
|
return {"message": "Hello World"} |