mirror of
https://github.com/QuivrHQ/quivr.git
synced 2024-12-15 17:43:03 +03:00
310 lines
9.5 KiB
Python
310 lines
9.5 KiB
Python
import os
|
|
import time
|
|
from http.client import HTTPException
|
|
from typing import List
|
|
from uuid import UUID
|
|
|
|
from auth import AuthBearer, get_current_user
|
|
from fastapi import APIRouter, Depends, Query, Request
|
|
from fastapi.responses import StreamingResponse
|
|
from llm.openai import OpenAIBrainPicking
|
|
from llm.openai_functions import OpenAIFunctionsBrainPicking
|
|
from llm.private_gpt4all import PrivateGPT4AllBrainPicking
|
|
from models.brains import get_default_user_brain_or_create_new
|
|
from models.chat import Chat, ChatHistory
|
|
from models.chats import ChatQuestion
|
|
from models.settings import LLMSettings, common_dependencies
|
|
from models.users import User
|
|
from repository.chat.create_chat import CreateChatProperties, create_chat
|
|
from repository.chat.get_chat_by_id import get_chat_by_id
|
|
from repository.chat.get_chat_history import get_chat_history
|
|
from repository.chat.get_user_chats import get_user_chats
|
|
from repository.chat.update_chat import ChatUpdatableProperties, update_chat
|
|
from utils.constants import (
|
|
openai_function_compatible_models,
|
|
streaming_compatible_models,
|
|
)
|
|
|
|
chat_router = APIRouter()
|
|
|
|
|
|
class NullableUUID:
|
|
@classmethod
|
|
def __get_validators__(cls):
|
|
yield cls.validate
|
|
|
|
@classmethod
|
|
def validate(cls, v):
|
|
if v == "":
|
|
return None
|
|
try:
|
|
return UUID(v)
|
|
except ValueError:
|
|
return None
|
|
|
|
|
|
def get_chat_details(commons, chat_id):
|
|
response = (
|
|
commons["supabase"]
|
|
.from_("chats")
|
|
.select("*")
|
|
.filter("chat_id", "eq", chat_id)
|
|
.execute()
|
|
)
|
|
return response.data
|
|
|
|
|
|
def delete_chat_from_db(commons, chat_id):
|
|
try:
|
|
commons["supabase"].table("chat_history").delete().match(
|
|
{"chat_id": chat_id}
|
|
).execute()
|
|
except Exception as e:
|
|
print(e)
|
|
pass
|
|
try:
|
|
commons["supabase"].table("chats").delete().match(
|
|
{"chat_id": chat_id}
|
|
).execute()
|
|
except Exception as e:
|
|
print(e)
|
|
pass
|
|
|
|
|
|
def fetch_user_stats(commons, user, date):
|
|
response = (
|
|
commons["supabase"]
|
|
.from_("users")
|
|
.select("*")
|
|
.filter("email", "eq", user.email)
|
|
.filter("date", "eq", date)
|
|
.execute()
|
|
)
|
|
userItem = next(iter(response.data or []), {"requests_count": 0})
|
|
return userItem
|
|
|
|
|
|
def check_user_limit(
|
|
user: User,
|
|
):
|
|
if user.user_openai_api_key is None:
|
|
date = time.strftime("%Y%m%d")
|
|
max_requests_number = int(os.getenv("MAX_REQUESTS_NUMBER", 1000))
|
|
|
|
user.increment_user_request_count(date)
|
|
if int(user.requests_count) >= int(max_requests_number):
|
|
raise HTTPException(
|
|
status_code=429, # pyright: ignore reportPrivateUsage=none
|
|
detail="You have reached the maximum number of requests for today.", # pyright: ignore reportPrivateUsage=none
|
|
)
|
|
else:
|
|
pass
|
|
|
|
|
|
# get all chats
|
|
@chat_router.get("/chat", dependencies=[Depends(AuthBearer())], tags=["Chat"])
|
|
async def get_chats(current_user: User = Depends(get_current_user)):
|
|
"""
|
|
Retrieve all chats for the current user.
|
|
|
|
- `current_user`: The current authenticated user.
|
|
- Returns a list of all chats for the user.
|
|
|
|
This endpoint retrieves all the chats associated with the current authenticated user. It returns a list of chat objects
|
|
containing the chat ID and chat name for each chat.
|
|
"""
|
|
chats = get_user_chats(current_user.id) # pyright: ignore reportPrivateUsage=none
|
|
return {"chats": chats}
|
|
|
|
|
|
# delete one chat
|
|
@chat_router.delete(
|
|
"/chat/{chat_id}", dependencies=[Depends(AuthBearer())], tags=["Chat"]
|
|
)
|
|
async def delete_chat(chat_id: UUID):
|
|
"""
|
|
Delete a specific chat by chat ID.
|
|
"""
|
|
commons = common_dependencies()
|
|
delete_chat_from_db(commons, chat_id)
|
|
return {"message": f"{chat_id} has been deleted."}
|
|
|
|
|
|
# update existing chat metadata
|
|
@chat_router.put(
|
|
"/chat/{chat_id}/metadata", dependencies=[Depends(AuthBearer())], tags=["Chat"]
|
|
)
|
|
async def update_chat_metadata_handler(
|
|
chat_data: ChatUpdatableProperties,
|
|
chat_id: UUID,
|
|
current_user: User = Depends(get_current_user),
|
|
) -> Chat:
|
|
"""
|
|
Update chat attributes
|
|
"""
|
|
|
|
chat = get_chat_by_id(chat_id) # pyright: ignore reportPrivateUsage=none
|
|
if current_user.id != chat.user_id:
|
|
raise HTTPException(
|
|
status_code=403, # pyright: ignore reportPrivateUsage=none
|
|
detail="You should be the owner of the chat to update it.", # pyright: ignore reportPrivateUsage=none
|
|
)
|
|
return update_chat(chat_id=chat_id, chat_data=chat_data)
|
|
|
|
|
|
# create new chat
|
|
@chat_router.post("/chat", dependencies=[Depends(AuthBearer())], tags=["Chat"])
|
|
async def create_chat_handler(
|
|
chat_data: CreateChatProperties,
|
|
current_user: User = Depends(get_current_user),
|
|
):
|
|
"""
|
|
Create a new chat with initial chat messages.
|
|
"""
|
|
|
|
return create_chat(user_id=current_user.id, chat_data=chat_data)
|
|
|
|
|
|
# add new question to chat
|
|
@chat_router.post(
|
|
"/chat/{chat_id}/question",
|
|
dependencies=[
|
|
Depends(
|
|
AuthBearer(),
|
|
),
|
|
],
|
|
tags=["Chat"],
|
|
)
|
|
async def create_question_handler(
|
|
request: Request,
|
|
chat_question: ChatQuestion,
|
|
chat_id: UUID,
|
|
brain_id: NullableUUID
|
|
| UUID
|
|
| None = Query(..., description="The ID of the brain"),
|
|
current_user: User = Depends(get_current_user),
|
|
) -> ChatHistory:
|
|
current_user.user_openai_api_key = request.headers.get("Openai-Api-Key")
|
|
try:
|
|
check_user_limit(current_user)
|
|
llm_settings = LLMSettings()
|
|
|
|
if not brain_id:
|
|
brain_id = get_default_user_brain_or_create_new(current_user).id
|
|
|
|
if llm_settings.private:
|
|
gpt_answer_generator = PrivateGPT4AllBrainPicking(
|
|
chat_id=str(chat_id),
|
|
brain_id=str(brain_id),
|
|
user_openai_api_key=current_user.user_openai_api_key,
|
|
streaming=False,
|
|
model_path=llm_settings.model_path,
|
|
)
|
|
|
|
elif chat_question.model in openai_function_compatible_models:
|
|
gpt_answer_generator = OpenAIFunctionsBrainPicking(
|
|
model=chat_question.model,
|
|
chat_id=str(chat_id),
|
|
temperature=chat_question.temperature,
|
|
max_tokens=chat_question.max_tokens,
|
|
brain_id=str(brain_id),
|
|
user_openai_api_key=current_user.user_openai_api_key, # pyright: ignore reportPrivateUsage=none
|
|
)
|
|
|
|
else:
|
|
gpt_answer_generator = OpenAIBrainPicking(
|
|
chat_id=str(chat_id),
|
|
model=chat_question.model,
|
|
max_tokens=chat_question.max_tokens,
|
|
temperature=chat_question.temperature,
|
|
brain_id=str(brain_id),
|
|
user_openai_api_key=current_user.user_openai_api_key, # pyright: ignore reportPrivateUsage=none
|
|
)
|
|
|
|
chat_answer = gpt_answer_generator.generate_answer( # pyright: ignore reportPrivateUsage=none
|
|
chat_question.question
|
|
)
|
|
|
|
return chat_answer
|
|
except HTTPException as e:
|
|
raise e
|
|
|
|
|
|
# stream new question response from chat
|
|
@chat_router.post(
|
|
"/chat/{chat_id}/question/stream",
|
|
dependencies=[
|
|
Depends(
|
|
AuthBearer(),
|
|
),
|
|
],
|
|
tags=["Chat"],
|
|
)
|
|
async def create_stream_question_handler(
|
|
request: Request,
|
|
chat_question: ChatQuestion,
|
|
chat_id: UUID,
|
|
brain_id: NullableUUID
|
|
| UUID
|
|
| None = Query(..., description="The ID of the brain"),
|
|
current_user: User = Depends(get_current_user),
|
|
) -> StreamingResponse:
|
|
# TODO: check if the user has access to the brain
|
|
if not brain_id:
|
|
brain_id = get_default_user_brain_or_create_new(current_user).id
|
|
|
|
if chat_question.model not in streaming_compatible_models:
|
|
# Forward the request to the none streaming endpoint
|
|
return await create_question_handler(
|
|
request,
|
|
chat_question,
|
|
chat_id,
|
|
current_user, # pyright: ignore reportPrivateUsage=none
|
|
)
|
|
|
|
try:
|
|
user_openai_api_key = request.headers.get("Openai-Api-Key")
|
|
streaming = True
|
|
check_user_limit(current_user)
|
|
llm_settings = LLMSettings()
|
|
|
|
if llm_settings.private:
|
|
gpt_answer_generator = PrivateGPT4AllBrainPicking(
|
|
chat_id=str(chat_id),
|
|
brain_id=str(brain_id),
|
|
user_openai_api_key=user_openai_api_key,
|
|
streaming=streaming,
|
|
model_path=llm_settings.model_path,
|
|
)
|
|
else:
|
|
gpt_answer_generator = OpenAIBrainPicking(
|
|
chat_id=str(chat_id),
|
|
model=chat_question.model,
|
|
max_tokens=chat_question.max_tokens,
|
|
temperature=chat_question.temperature,
|
|
brain_id=str(brain_id),
|
|
user_openai_api_key=user_openai_api_key, # pyright: ignore reportPrivateUsage=none
|
|
streaming=streaming,
|
|
)
|
|
|
|
return StreamingResponse(
|
|
gpt_answer_generator.generate_stream( # pyright: ignore reportPrivateUsage=none
|
|
chat_question.question
|
|
),
|
|
media_type="text/event-stream",
|
|
)
|
|
|
|
except HTTPException as e:
|
|
raise e
|
|
|
|
|
|
# get chat history
|
|
@chat_router.get(
|
|
"/chat/{chat_id}/history", dependencies=[Depends(AuthBearer())], tags=["Chat"]
|
|
)
|
|
async def get_chat_history_handler(
|
|
chat_id: UUID,
|
|
) -> List[ChatHistory]:
|
|
# TODO: RBAC with current_user
|
|
return get_chat_history(chat_id) # pyright: ignore reportPrivateUsage=none
|