quivr/backend/models/brains.py
2023-07-12 10:03:07 +02:00

272 lines
8.3 KiB
Python

import os
from typing import Any, List, Optional
from uuid import UUID
from logger import get_logger
from models.settings import CommonsDep, common_dependencies
from models.users import User
from pydantic import BaseModel
from utils.vectors import get_unique_files_from_vector_ids
logger = get_logger(__name__)
class Brain(BaseModel):
id: Optional[UUID] = None
name: Optional[str] = "Default brain"
status: Optional[str] = "public"
model: Optional[str] = "gpt-3.5-turbo-0613"
temperature: Optional[float] = 0.0
max_tokens: Optional[int] = 256
max_brain_size: Optional[int] = int(os.getenv("MAX_BRAIN_SIZE",52428800))
files: List[Any] = []
class Config:
arbitrary_types_allowed = True
@property
def commons(self) -> CommonsDep:
return common_dependencies()
@property
def brain_size(self):
self.get_unique_brain_files()
current_brain_size = sum(float(doc["size"]) for doc in self.files)
return current_brain_size
@property
def remaining_brain_size(self):
return (
float(self.max_brain_size) # pyright: ignore reportPrivateUsage=none
- self.brain_size # pyright: ignore reportPrivateUsage=none
)
@classmethod
def create(cls, *args, **kwargs):
commons = common_dependencies()
return cls(
commons=commons, *args, **kwargs # pyright: ignore reportPrivateUsage=none
) # pyright: ignore reportPrivateUsage=none
def get_user_brains(self, user_id):
response = (
self.commons["supabase"]
.from_("brains_users")
.select("id:brain_id, brains (id: brain_id, name)")
.filter("user_id", "eq", user_id)
.execute()
)
return [item["brains"] for item in response.data]
def get_brain_for_user(self, user_id):
response = (
self.commons["supabase"]
.from_("brains_users")
.select("id:brain_id, rights, brains (id: brain_id, name)")
.filter("user_id", "eq", user_id)
.filter("brain_id", "eq", self.id)
.execute()
)
if len(response.data) == 0:
return None
return response.data[0]
def get_brain_details(self):
response = (
self.commons["supabase"]
.from_("brains")
.select("id:brain_id, name, *")
.filter("brain_id", "eq", self.id)
.execute()
)
return response.data
def delete_brain(self, user_id):
results = (
self.commons["supabase"]
.table("brains_users")
.select("*")
.match({"brain_id": self.id, "user_id": user_id, "rights": "Owner"})
.execute()
)
if len(results.data) == 0:
return {"message": "You are not the owner of this brain."}
else:
results = (
self.commons["supabase"]
.table("brains_vectors")
.delete()
.match({"brain_id": self.id})
.execute()
)
results = (
self.commons["supabase"]
.table("brains_users")
.delete()
.match({"brain_id": self.id})
.execute()
)
results = (
self.commons["supabase"]
.table("brains")
.delete()
.match({"brain_id": self.id})
.execute()
)
def create_brain(self):
commons = common_dependencies()
response = (
commons["supabase"].table("brains").insert({"name": self.name}).execute()
)
self.id = response.data[0]["brain_id"]
return response.data
def create_brain_user(self, user_id: UUID, rights, default_brain):
commons = common_dependencies()
response = (
commons["supabase"]
.table("brains_users")
.insert(
{
"brain_id": str(self.id),
"user_id": str(user_id),
"rights": rights,
"default_brain": default_brain,
}
)
.execute()
)
return response.data
def create_brain_vector(self, vector_id, file_sha1):
response = (
self.commons["supabase"]
.table("brains_vectors")
.insert(
{
"brain_id": str(self.id),
"vector_id": str(vector_id),
"file_sha1": file_sha1,
}
)
.execute()
)
return response.data
def get_vector_ids_from_file_sha1(self, file_sha1: str):
# move to vectors class
vectorsResponse = (
self.commons["supabase"]
.table("vectors")
.select("id")
.filter("metadata->>file_sha1", "eq", file_sha1)
.execute()
)
return vectorsResponse.data
def update_brain_fields(self):
self.commons["supabase"].table("brains").update({"name": self.name}).match(
{"brain_id": self.id}
).execute()
def update_brain_with_file(self, file_sha1: str):
# not used
vector_ids = self.get_vector_ids_from_file_sha1(file_sha1)
for vector_id in vector_ids:
self.create_brain_vector(vector_id, file_sha1)
def get_unique_brain_files(self):
"""
Retrieve unique brain data (i.e. uploaded files and crawled websites).
"""
response = (
self.commons["supabase"]
.from_("brains_vectors")
.select("vector_id")
.filter("brain_id", "eq", self.id)
.execute()
)
vector_ids = [item["vector_id"] for item in response.data]
if len(vector_ids) == 0:
return []
self.files = get_unique_files_from_vector_ids(vector_ids)
return self.files
def delete_file_from_brain(self, file_name: str):
# First, get the vector_ids associated with the file_name
vector_response = (
self.commons["supabase"]
.table("vectors")
.select("id")
.filter("metadata->>file_name", "eq", file_name)
.execute()
)
vector_ids = [item["id"] for item in vector_response.data]
# For each vector_id, delete the corresponding entry from the 'brains_vectors' table
for vector_id in vector_ids:
self.commons["supabase"].table("brains_vectors").delete().filter(
"vector_id", "eq", vector_id
).filter("brain_id", "eq", self.id).execute()
# Check if the vector is still associated with any other brains
associated_brains_response = (
self.commons["supabase"]
.table("brains_vectors")
.select("brain_id")
.filter("vector_id", "eq", vector_id)
.execute()
)
associated_brains = [
item["brain_id"] for item in associated_brains_response.data
]
# If the vector is not associated with any other brains, delete it from 'vectors' table
if not associated_brains:
self.commons["supabase"].table("vectors").delete().filter(
"id", "eq", vector_id
).execute()
return {"message": f"File {file_name} in brain {self.id} has been deleted."}
def get_default_user_brain(user: User):
commons = common_dependencies()
response = (
commons["supabase"]
.from_("brains_users")
.select("brain_id")
.filter("user_id", "eq", user.id)
.filter("default_brain", "eq", True)
.execute()
)
logger.info("Default brain response:", response.data)
default_brain_id = response.data[0]["brain_id"] if response.data else None
logger.info(f"Default brain id: {default_brain_id}")
if default_brain_id:
brain_response = (
commons["supabase"]
.from_("brains")
.select("id:brain_id, name, *")
.filter("brain_id", "eq", default_brain_id)
.execute()
)
return brain_response.data[0] if brain_response.data else None
return None