quivr/backend/core/utils/vectors.py

121 lines
4.0 KiB
Python
Raw Normal View History

from concurrent.futures import ThreadPoolExecutor
from typing import List
2023-05-22 09:39:55 +03:00
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.schema import Document
from llm.utils.summarization import llm_summerize
2023-05-22 09:39:55 +03:00
from logger import get_logger
from models.settings import BrainSettings, CommonsDep, common_dependencies
2023-06-19 22:15:35 +03:00
from pydantic import BaseModel
2023-05-22 09:39:55 +03:00
logger = get_logger(__name__)
2023-06-19 22:15:35 +03:00
class Neurons(BaseModel):
2023-06-19 22:15:35 +03:00
commons: CommonsDep
settings = BrainSettings() # pyright: ignore reportPrivateUsage=none
2023-06-28 20:39:27 +03:00
def create_vector(self, doc, user_openai_api_key=None):
logger.info("Creating vector for document")
2023-06-19 22:15:35 +03:00
logger.info(f"Document: {doc}")
if user_openai_api_key:
self.commons["documents_vector_store"]._embedding = OpenAIEmbeddings(
openai_api_key=user_openai_api_key
) # pyright: ignore reportPrivateUsage=none
2023-06-19 22:15:35 +03:00
try:
sids = self.commons["documents_vector_store"].add_documents([doc])
2023-06-19 22:15:35 +03:00
if sids and len(sids) > 0:
2023-06-28 20:39:27 +03:00
return sids
2023-06-19 22:15:35 +03:00
except Exception as e:
logger.error(f"Error creating vector for document {e}")
def create_embedding(self, content):
return self.commons["embeddings"].embed_query(content)
2023-06-19 22:15:35 +03:00
def similarity_search(self, query, table="match_summaries", top_k=5, threshold=0.5):
2023-06-19 22:15:35 +03:00
query_embedding = self.create_embedding(query)
summaries = (
self.commons["supabase"]
.rpc(
table,
{
"query_embedding": query_embedding,
"match_count": top_k,
"match_threshold": threshold,
},
)
.execute()
)
2023-06-19 22:15:35 +03:00
return summaries.data
def create_summary(commons: CommonsDep, document_id, content, metadata):
2023-05-22 09:39:55 +03:00
logger.info(f"Summarizing document {content[:100]}")
summary = llm_summerize(content)
logger.info(f"Summary: {summary}")
metadata["document_id"] = document_id
summary_doc_with_metadata = Document(page_content=summary, metadata=metadata)
sids = commons["summaries_vector_store"].add_documents([summary_doc_with_metadata])
2023-05-22 09:39:55 +03:00
if sids and len(sids) > 0:
commons["supabase"].table("summaries").update(
{"document_id": document_id}
).match({"id": sids[0]}).execute()
def error_callback(exception):
print("An exception occurred:", exception)
def process_batch(batch_ids: List[str]):
commons = common_dependencies()
supabase = commons["supabase"]
try:
if len(batch_ids) == 1:
return (
supabase.table("vectors")
.select(
"name:metadata->>file_name, size:metadata->>file_size",
count="exact",
)
.eq("id", batch_ids[0]) # Use parameter binding for single ID
.execute()
).data
else:
return (
supabase.table("vectors")
.select(
"name:metadata->>file_name, size:metadata->>file_size",
count="exact",
)
.in_("id", batch_ids) # Use parameter binding for multiple IDs
.execute()
).data
except Exception as e:
logger.error("Error retrieving batched vectors", e)
def get_unique_files_from_vector_ids(vectors_ids: List[str]):
# Move into Vectors class
"""
Retrieve unique user data vectors.
"""
# constants
BATCH_SIZE = 5
with ThreadPoolExecutor() as executor:
futures = []
for i in range(0, len(vectors_ids), BATCH_SIZE):
batch_ids = vectors_ids[i : i + BATCH_SIZE]
future = executor.submit(process_batch, batch_ids)
futures.append(future)
# Retrieve the results
vectors_responses = [future.result() for future in futures]
documents = [item for sublist in vectors_responses for item in sublist]
print("document", documents)
unique_files = [dict(t) for t in set(tuple(d.items()) for d in documents)]
return unique_files